摘要:
Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. Cells can be transformed with a proliferation-promoting gene such as the oncogene, SV40, linked to a regulatable promoter such as the Mx1 promoter, the promotor is activated in vitro to express the gene to result in cell proliferation, and the promotor is inactivated before or after insertion of the cells in the bioartificial organ to inhibit expression of the gene to reduce or stop cell proliferation in vivo. The promoter can be reactivated in vivo to again express the gene to result in further cell proliferation. The gene may be a proliferation-suppressing gene such as p53 gene or RB gene, or a differentiation-inducing gene such as high mobility group chromosomal protein 14. Inhibiting gene expression in vitro causes cell proliferation, and inducing gene expression reduces or stops cell proliferation in vivo.
摘要:
The present invention provides novel devices and methods for continuous, controlled delivery of a biologically active molecule to the eye, either intraocularly or periocularly, to treat ophthalmic disorders. A capsule is surgically placed in the desired location in the eye. The capsule includes cells which produce the biologically active molecule. The capsule also includes a surrounding biocompatible jacket through which the biologically active molecule may diffuse into the eye. This jacket may immunoisolate the encapsulated cells, protecting them from attack by the immune system of the patient.
摘要:
This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
摘要:
This invention relates to implantation of encapsulated PC12 cells capable of slowing or preventing the degenerative processes of Parkinson's disease by releasing factors in addition to dopamine into individuals suffering from the disease. This restorative effect continues even after the encapsulated cells are removed from the patient's brain.
摘要:
Bioartificial organ storage and transport apparatus having a media storage container. The apparatus is designed to securely maintain a bioartificial organ within the container in a sealed environment. The apparatus may also allow for gas exchange and media exchange to ensure the viability of the bioartificial organ. In addition, the apparatus may use a secondary container and cap, designed to allow access to the media storage container and allow for gas exchange and media exchange.
摘要:
This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal. In addition, this invention provides a general means for maintaining, for extended periods of time, the in vivo expression of transgenes.
摘要:
A bioartificial organ for implanting to provide a therapeutic effect is prepared containing a core of living cells encapsulated in a foam-like membrane having three regions: a dense, fine-pored, permselective inner region, a middle region that lacks macrovoids and a fine-pored outer region. The membrane has a molecular weight cutoff that permits passage to nutrients to the cells but not passage of the cells. Preferably, the membrane is made of polyether sulfone, pores range in size between 0.02 .mu.m and 2.0 .mu.m and have polyhedrally symmetric boundaries and are arranged asymmetrically from one surface to the other. The membrane has an asymmetry factor AF relative to the maximum pore diameter of 0.01 to 2.0 and a ratio of the maximum mean free path length to the diameter of the largest pore of greater than 3. The membrane can be hydrophobic or hydrophilic. The bioartificial organ is formed by coextrusion or by stepwise assembly by forming the cell core and then applying the membrane. A polyether sulfone membrane is prepared from a solution containing by weight 12 to 35% polyether sulfone and 15 to 65% .epsilon.-caprolactam, and optionally 0 to 85% latent solvent, 0 to 15% thickner, to 5% non-solvent and 0 to 1% auxiliaries. Cells encapsulated can be cells that produce a neurotransmitter such as dopamine or a biologically active factor such as CNTF, NGF, GDNF, endorphins, catecholamines or enkephalins.
摘要:
A permselective graft polymer is disclosed that is formed by converting into intermediate reactive sites a portion of the cyano groups of a backbone polymer and grafting polyalkylene oxide polymer chains to the backbone polymer through the reactive sites. Either the backbone polymer of a polymer resin or a permselective polymer membrane can be grafted. When a resin is used, it is formed into a permselective polymer membrane using known methods. The resulting permselective membrane can be formed into hollow fibers or flat sheets for the encapsulation of living cells. The encapsulated cells are then implanted into a patient in need of the biologically-active factors produced by the cells. The permselective graft polymer membrane exhibits good molecular diffusion with minimal protein adsorption.
摘要:
This invention provides improved devices and methods for long-term, stable expression of a biologically active molecule using a biocompatible capsule containing genetically engineered cells for the effective delivery of biologically active molecules to effect or enhance a biological function within a mammalian host. The novel capsules of this invention are biocompatible and are easily retrievable. This invention specifically provides improved methods and compositions which utilize cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. Furthermore, the methods of this invention allow for the long-term, stable and efficacious delivery of biologically active molecules from living cells to specific sites within a given mammal. In addition, this invention provides a general means for maintaining, for extended periods of time, the in vivo expression of transgenes.