Substituted donor atoms in silicon crystal for quantum computer
    3.
    发明授权
    Substituted donor atoms in silicon crystal for quantum computer 有权
    用于量子计算机的硅晶体中的取代的供体原子

    公开(公告)号:US07097708B2

    公开(公告)日:2006-08-29

    申请号:US10484759

    申请日:2002-08-20

    IPC分类号: C30B25/12

    摘要: This invention concerns nanoscale products, such as electronic devices fabricated to nanometer accuracy. It also concerns atomic scale products. These products may have an array of electrically active dopant atoms in a silicon surface, or an encapsulated layer of electrically active donor atoms. In a further aspect the invention concerns a method of fabricating such products. The methods include forming a preselected array of donor atoms incorporated into silicon. Encapsulation by growing silicon over a doped surface, after desorbing the passivating hydrogen. Also, using an STM to view donor atoms on the silicon surface during fabrication of a nanoscale device, and measuring the electrical activity of the donor atoms during fabrication of a nanoscale device. Such products and processes are useful in the fabrication of a quantum computer, but could have many other uses.

    摘要翻译: 本发明涉及纳米级产品,例如以纳米精度制造的电子器件。 它也涉及原子级产品。 这些产品可以在硅表面或电活性供体原子的封装层中具有阵列的电活性掺杂剂原子。 在另一方面,本发明涉及一种制造这种产品的方法。 所述方法包括形成掺入硅中的供体原子的预选阵列。 在解吸钝化氢后,通过在掺杂表面上生长硅来封装。 此外,在制造纳米级器件期间使用STM来观察硅表面上的供体原子,并且在制造纳米尺度器件期间测量施主原子的电活性。 这样的产品和方法在量子计算机的制造中是有用的,但是可以具有许多其它用途。

    Components for optical qubits in the radio frequency basis
    8.
    发明授权
    Components for optical qubits in the radio frequency basis 有权
    基于射频的光量子位组件

    公开(公告)号:US07719736B2

    公开(公告)日:2010-05-18

    申请号:US10577799

    申请日:2004-10-27

    IPC分类号: G06E3/00 G01B9/02

    摘要: In the field of optical quantum information processing, manipulation of single photon qubits in frequency modes employs a frequency beamsplitter employs an asymmetric two-path interferometer, reversible down to the quantum limit. A first partially transmitting mirror splits photons into first and second paths. A time delay element introduces a differential time delay into the second path. And a second partially transmitting mirror mixes the two paths again to form two outputs. A half-wave plate utilizes two of the beam splitters.

    摘要翻译: 在光量子信息处理领域中,频率模式中单光子量子位的操纵采用频率分束器,采用非对称双路干涉仪,可逆向量子极限。 第一部分透射镜将光子分解成第一和第二路径。 时间延迟元件将差分时间延迟引入第二路径。 并且第二部分透射镜再次混合两个路径以形成两个输出。 半波片使用两个分束器。

    Qubit readout via controlled coherent tunnelling to probe state
    9.
    发明授权
    Qubit readout via controlled coherent tunnelling to probe state 失效
    通过控制相干隧道到探测状态的Qubit读数

    公开(公告)号:US07479652B2

    公开(公告)日:2009-01-20

    申请号:US10567990

    申请日:2004-08-10

    IPC分类号: H01L29/06

    CPC分类号: G06N99/002 B82Y10/00

    摘要: This invention concerns quantum computers in which the qubits are closed systems, in that the particle or particles are confined within the structure. A “site” can be produced by any method of confining an electron or other quantum particle, such as a dopant atom, a quantum dot, a cooper pair box, or any combination of these. In particular the invention concerns a closed three-site quantum particle system. The state in the third site is weakly coupled by coherent tunneling to the first and second states, so that the third state is able to map out the populations of the first and second states as its energy is scanned with respect to the first and second states. In second and third aspects it concerns a readout method for a closed three-state quantum particle system.

    摘要翻译: 本发明涉及其中量子位是封闭系统的量子计算机,其中颗粒或颗粒被限制在结构内。 可以通过限制电子或其他量子粒子,例如掺杂剂原子,量子点,铜对盒或这些的任何组合的任何方法来产生“位点”。 特别地,本发明涉及封闭的三位置量子粒子系统。 第三站点中的状态通过相干隧道到第一和第二状态而弱耦合,使得第三状态能够映射第一和第二状态的群体,因为其能量相对于第一和第二状态被扫描 。 在第二和第三方面,它涉及封闭的三态量子粒子系统的读出方法。

    Fabrication of atomic scale devices
    10.
    发明授权
    Fabrication of atomic scale devices 有权
    原子尺度装置的制造

    公开(公告)号:US08580674B2

    公开(公告)日:2013-11-12

    申请号:US12866324

    申请日:2008-12-09

    IPC分类号: H01L21/4763

    摘要: This invention concerns the fabrication of nano to atomic scale devices, that is electronic devices fabricated down to atomic accuracy. The fabrication process uses either an SEM or a STM tip to pattern regions on a semiconductor substrate. Then, forming electrically active parts of the device at those regions. Encapsulating the formed device. Using a SEM or optical microscope to align locations for electrically conducting elements on the surface of the encapsulating semiconductor with respective active parts of the device encapsulated below the surface. Forming electrically conducting elements on the surface at the aligned locations. And, electrically connecting electrically conducting elements on the surface with aligned parts of the device encapsulated below the surface to allow electrical connectivity and tunability of the device. In further aspects the invention concerns the devices themselves.

    摘要翻译: 本发明涉及纳米到原子尺度装置的制造,即以原子精度制造的电子装置。 制造工艺使用SEM或STM尖端来对半导体衬底上的区域进行图案化。 然后,在那些区域形成器件的电活性部分。 封装形成的装置。 使用SEM或光学显微镜将包封半导体表面上的导电元件的位置与封装在表面下方的器件的相应有效部分对准。 在对准位置的表面上形成导电元件。 并且,将表面上的导电元件电连接到封装在表面下方的器件的对准部分,以允许器件的电连接和可调谐性。 在另外的方面,本发明涉及装置本身。