Abstract:
Seed pulse generators for fiber amplifier systems include a seed pump controller coupled to a seed pump laser diode. A photodetector is situated to detect seed pulse generation, and is coupled to the seed pump controller so that seed pumping is decreased upon pulse detection. For a laser diode pump source, a pump current can be pulsed to produce a seed pulse and then decreased to a bias level such as a DC bias current that is less than a pump laser threshold current. Single seed pulses can be generated with reduced pulse jitter.
Abstract:
A high brightness diode laser package includes a plurality of flared laser oscillator waveguides arranged on a stepped surface to emit respective laser beams in one or more emission directions, a plurality of optical components situated to receive the laser beams from the plurality of flared laser oscillator waveguides and to provide the beams in a closely packed relationship, and an optical fiber optically coupled to the closely packed beams for coupling the laser beams out of the diode laser package.
Abstract:
A broad area semiconductor diode laser device includes a multiple flared oscillator waveguide including a plurality of component flared oscillator waveguides, each component flared oscillator waveguide including a multimode high reflector facet, a partial reflector facet spaced apart from the high reflector facet, and a flared current injection region extending and widening between the multimode high reflector facet and the partial reflector facet, wherein the ratio of a partial reflector facet width to a high reflector facet width is n:1, where n>1, and wherein the component flared oscillator waveguides of the multiple flared oscillator waveguide are arranged in a row such that portions of the flared current injection regions of adjacently situated component flared oscillator waveguides overlap each other or are in proximity to each other on the order of the wavelength of light emitted by the component flared oscillator waveguides.
Abstract:
A multi-wavelength semiconductor diode laser device includes a semiconductor diode gain medium including one or more quantum well structures, each of the quantum well structures having an associated gain peak, the semiconductor gain medium further including a back facet configured for high reflection of laser light therein and a front facet configured for coupling a laser beam therefrom, one or more collimation optics configured to receive the laser beam, and an external volume Bragg grating configured to reflect a portion of the laser beam and narrow the wavelength of at least a portion of the light generated by the semiconductor gain medium to a selected wavelength corresponding to at least one of the gain peaks, wherein an output beam is coupled out of the external volume Bragg grating, the output beam having a plurality of output wavelengths.
Abstract:
A process measurement system for measuring a parameter of a work surface includes a light source configured to provide a material processing beam, an optical delivery system optically coupled to the light source and configured to homogenize and direct the material processing beam to the work surface, the optical delivery system including a process optic for optically coupling the material processing beam to the work surface in a predetermined way, the optical delivery system including a delivery waveguide having an output face optically coupled to the process optic, and an optical pyrometer in optical communication with the optical delivery system and configured to receive a pyrometer signal emitted from the work surface and coupled into said output face.
Abstract:
A broad area semiconductor diode laser device includes a multimode high reflector facet, a partial reflector facet spaced from said multimode high reflector facet, and a flared current injection region extending and widening between the multimode high reflector facet and the partial reflector facet, wherein the ratio of a partial reflector facet width to a high reflector facet width is n:1, where n>1. The broad area semiconductor laser device is a flared laser oscillator waveguide delivering improved beam brightness and beam parameter product over conventional straight waveguide configurations.
Abstract:
Pulsed fiber lasers that amplify seed laser pulses include pump laser drivers that produce simmer currents during periods in which the seed pulse is suspended, and forward currents associated with steady state pulse amplification. By suitable selection of simmer currents, initiation of a series of seed pulses produces pulse-to-pulse output powers with suitable power variation.
Abstract:
Multimode beam combiners include at least one gradient-step index optical fiber in which a refractive index difference at a core/cladding interface is selected to provide a numerical aperture so as to provide stable, uniform beam output. One or more such fibers is formed into a tapered bundle than can be shaped to provide a selected illuminated aperture. The fibers in the bundle can be separated by respective tapered claddings so as to be optically coupled or uncoupled. Illumination systems can include a plurality of such fibers coupled to a plurality of laser diodes or other light sources.
Abstract:
A hair removal device utilizes a system for sensing the presence and color of skin. The system includes a skin color sensor assembly and a capacitive sensor assembly disposed in a housing. The skin color sensor assembly includes a light pipe communicating with a color sensor aperture of the housing and having one or more notches defining receiving and emitting light propagation regions, a color sensor and one or more light emitting diodes, and a holder having at least one standoff mated to the notches thereby directing light emitted by the light emitting diodes through the light pipe for reflection of an external surface and receipt by the sensor for detection of surface color. The capacitive sensor assembly includes a plurality of copper elements in proximity to a device aperture and contacting an interior surface of the housing and for detection of an object in contact with the copper elements.
Abstract:
Optical fibers that provide stable output beam sizes have core refractive indices that decrease non-monotonically from a core center to a core/cladding interface. A maximum refractive index of the core is situated at a radius of between about ½ and ¾ of the core radius so that a core center has a depressed refractive index. Such fibers are included in diode pumped solid state lasers to deliver pump laser power to a laser medium.