摘要:
An embodiment of the present invention includes receiving a disk having a servo pattern and automatically identifying the center of the servo pattern. The present invention also automatically identifies the center of the physical disk and then automatically identifying the variance between the servo center and physical disk center.
摘要:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features masking positioned in the collection and detection subsystem arranged to selectively prevent a portion of scattered light from passing through. Also included is a scatter absorbing system having a series of scatter absorbing elements for minimizing unrelated to the scatter associated with a desired location on the surface.
摘要:
Representing vehicles in a customizable virtual environment is disclosed. One embodiment includes a controlled environment including prototype vehicles and a virtual environment including virtual representations of the prototype vehicles. The virtual environment is a display that includes an environment scenario, a number of virtual objects, and the various represented vehicles. The represented vehicles are linked to the prototype vehicles by communicating kinematic data from the prototype vehicles to the virtual vehicles real-time. The positions of the represented vehicles are updated based on the communicated kinematic data such that the virtual environment is a realistic visualization of the prototype vehicles. In addition, the virtual environment is highly customizable. In an embodiment, customizing the virtual environment includes generating reference views for the represented vehicles, editing the environment scenario, editing the virtual objects, editing the represented vehicles, and generating a mission scenario of the reference views.
摘要:
A system and method for crossing clocks from a source clock to a destination clock is disclosed. In one embodiment, a source clock phase enable signal is used to enable a set of latch components to selectively input a source clock pulse. The outputs of the latch components may be selected by a multiplexor according to the phases of the destination clock. In another embodiment, a time delay may be passed into the destination clock domain and may be calculated by a number of destination clock cycle time periods. In certain circumstances, the time delay may be adjusted to compensate for longer delays in the clock crossing process.
摘要:
A power generation device that provides power to an auxiliary system on an airborne platform, includes a piezoelectric energy harvesting device and an energy storage unit, including a battery and a power conditioner. The device extracts energy generated by turbulent airflow around the platform and stores the energy to meet future power requirements. The piezoelectric energy harvesting device is located on a portion of an inner surface of an outward shell of the platform. The stand-alone power generation device is electrically connected to the auxiliary system. The stand-alone power generation device also includes a router that connects the power generation unit to the platform electrical distribution system. Excess power generated by the device may be delivered to the platform electrical distribution system for use by other platform systems.
摘要:
A problem in the inspection of transparent wafers and disks is the detection of top surface particles. More precisely, it is being able to assign a scattering site as being due to a particle at the top or bottom surface of a transparent wafer. A method of the present invention is to use an elliptical mirror, with a pinhole at its top focus, together with a focused beam. The focused beam will diverge as it passes through the transparent wafer and as a result any particle on the bottom surface will see a lower optical intensity and will appear weaker than a top surface particle. The suppression of scattered light from the bottom surface occurs because the source of the scattered light (the bottom surface) is far from the bottom foci of the elliptical mirror. This means that the light from the bottom surface, which arrives inside the ellipsoid, will be out of focus at the top foci of the ellipsoid and as a result very little light from the bottom surface will pass through the pinhole at the top foci of the elliptical mirror. This reduction of light from the bottom surface can be further improved by making the pinhole diameter to be substantially less than the thickness of the transparent wafer.