摘要:
Thin diamond films can be selectively deposited imagewise on a substrate by gas phase synthesis. The substrate may be either a silicon substrate or a basal thin diamond film formed beforehand on a substrate by gas phase synthesis. Where a silicon substrate is used, its surface is first abraded to give a surface roughness suitable for gas phase synthesis of diamond. When a basal thin diamond film is used, a coating material capable of withstanding a temperature higher than a substrate temperature required for gas phase synthesis of diamond and having a high etching selectivity to diamond is needed to cover areas other than where the thin diamond film is to be newly formed. When a lift-off method is used, a thin masking film having a melting point higher than a temperature to be employed for gas phase synthesis of diamond can also be used in place of the coating material described above.
摘要:
A diamond thin film thermistor having a substrate, an electrically insulating diamond layer formed on the substrate by vapor-phase synthesis, a semiconducting diamond layer as a temperature-sensing part on the electrically insulating diamond layer by vapor-phase synthesis, and metal thin film electrodes attached to the semiconducting diamond layer. A plurality of such diamond thin film thermistors can simultaneously be formed on a single substrate, and the substrate is cut with a dicing saw to provide individual diamond thin film thermistor chips of the same quality.
摘要:
A schottky diode manufacturing process employing diamond film comprises forming a B-doped p-type polycrystalline diamond film on a low-resistance p-type Si substrate by CVD using a source gas consisting of CH.sub.4, H.sub.2 and B.sub.2 H.sub.6, forming an ohmic contact on the back of the p-type Si substrate, and forming a metal electrode of Al, Pt Au, Ti or W on the B-doped p-type polycrystalline diamond film. The B/C concentration ratio of the source gas is greater than 0.01 ppm and less than 20 ppm.
摘要:
An apparatus for detecting position/variance of input light is disclosed which includes a photoelectric conversion device receiving input light constituted of a first resistive layer formed of a first photoelectric conversion material and a second resistive layer formed of a second photoelectric conversion material connected with the first resistive layer through a depletion layer or directly, wherein the first resistive layer is provided with uniform resistivity throughout its surface so that a linear output proportional to the average of the distances between one end of the photoelectric conversion device and positions of the input light is detected and the second resistive layer is provided with resistivity dependent upon the distance from its one end so that a quandratic ouput proportional to the average of the squares of the distances between one end of the photoelectric conversion device and positions of the input light is detected.