摘要:
A metal sealing material used in a sealing device which can reduce a gap between a stator and a rotor of a turbine. The metal sealing material used in a sealing device for a stator and a rotor of a turbine includes a surface layer and a lower layer composed of a porous metal layer, wherein the porosity of the surface layer is smaller than the porosity of the lower layer; the porosity of the surface layer is 60 to 65% and the porosity of the lower layer is 67 to 75% or less; and the porous metal layer has a thickness of 0.3 to 3.0 mm and may include, as a main component, an MCrAlY alloy where M is either one of Ni and Co or both thereof, and h-BN as a solid lubricant.
摘要:
There is provided a high temperature component with a thermal barrier coating, which can be used as a high temperature component for a gas turbine, an aircraft gas turbine engine, or the like. A top coat is formed of a ceramic on a bond coat, the bond coat being formed on a heat resistant alloy substrate composed mainly of at least one element of nickel and cobalt, wherein the bond coat contains at least one of nickel and cobalt, chromium and aluminum, and further contains at least one selected from a group consisting of tantalum, cesium, tungsten, silicon, platinum, manganese and boron in a range of 0 to 20 wt %. The high temperature component according to the present invention has very high durability of a thermal-insulating ceramic layer, and is less susceptible to spalling damage.
摘要:
There is provided a high temperature component with a thermal barrier coating, which can be used as a high temperature component for a gas turbine, an aircraft gas turbine engine, or the like. A top coat is formed of a ceramic on a bond coat, the bond coat being formed on a heat resistant alloy substrate composed mainly of at least one element of nickel and cobalt, wherein the bond coat contains at least one of nickel and cobalt, chromium and aluminum, and further contains at least one selected from a group consisting of tantalum, cesium, tungsten, silicon, platinum, manganese and boron in a range of 0 to 20 wt %. The high temperature component according to the present invention has very high durability of a thermal-insulating ceramic layer, and is less susceptible to spalling damage.
摘要:
A method of applying a diffusion aluminide coating partially to a selective region more simply and conveniently, the method including a step of forming a metal aluminum film onto a selective region of the heat-resistant alloy substrate to be treated; and a step of applying a heat treatment to the heat-resistant alloy substrate on the selective region of which the metal aluminum film is formed and diffusing and penetrating aluminum in the metal aluminum film into the heat-resistant alloy substrate.
摘要:
A thermal barrier coating comprises a bond coating 12 made of high temperature corrosion resistance superior to a substrate 11 and a thermal barrier coating 13 made of ZrO2 series ceramics formed on the bond coating. The thermal barrier coating has cracks extending in the direction of the thickness of the barrier coat. Substantially all of the tips of the cracks have a distance between the tips and the boundary at the substrate side.
摘要:
A metal sealing material used in a sealing device which can reduce a gap between a stator and a rotor of a turbine. The metal sealing material used in a sealing device for a stator and a rotor of a turbine includes a surface layer and a lower layer composed of a porous metal layer, wherein the porosity of the surface layer is smaller than the porosity of the lower layer; the porosity of the surface layer is 60 to 65% and the porosity of the lower layer is 67 to 75% or less; and the porous metal layer has a thickness of 0.3 to 3.0 mm and may include, as a main component, an MCrAlY alloy where M is either one of Ni and Co or both thereof, and h-BN as a solid lubricant.
摘要:
A high-temperature resistant component for, e.g., a gas turbine hot part, includes an alloy substrate containing Ni, Co, or Fe as the principal component, and a thermal barrier coating formed over the surface of the substrate via a bond coat. The thermal barrier coating includes a porous thermal-barrier layer made of ceramic and an environmental barrier layer with corrosion resistance. An impregnated layer is provided between the environmental barrier layer and the thermal barrier layer. In the impregnated layer, the thermal barrier layer is impregnated with a part of the environmental barrier layer. The thermal barrier layer is made of a porous zirconia layer, and the environmental barrier layer includes silica as the principal component. The porous zirconia layer has pores impregnated with the part of the environmental barrier layer. As a result, the high-temperature resistant component has excellent corrosion resistance and excellent heat resistance.
摘要:
A gas turbine shroud includes a ceramic abradable coating superior in abradable property and durability. The gas turbine ceramic abradable coating of the present invention is configured by an abradable metal layer and a porous ceramic abradable layer (hardness RC15Y: 80±3), the porous ceramic abradable layer is provided with slit grooves by machining work, and a slit groove width is 0.5 to 5 mm. Thereby, the abradable property, and durability against a thermal cycle and high-temperature oxidation are improved.
摘要:
A steam turbine rotor shaft and method of manufacturing the same are provided wherein the sliding characteristics of a journal are improved, and the journal is free from welding cracks and does not need a post heat treatment. The low alloy steel coating layer having better sliding characteristics than 9 to 13% Cr heat resisting steel and an area rate of defects including pores and oxides in a range of 3 to 15% is formed by a high velocity flame spray coating method on a sliding surface of the journal.
摘要:
There is provided a gas turbine shroud including a ceramic abradable coating used as a gap adjusting component that can reduce a fluid leakage from a gap and increase turbine efficiency. A gas turbine ceramic abradable coating includes a bond layer, a thermal barrier ceramic layer, and a porous ceramic abradable layer (hardness may be RC15Y: 80±3). A slit groove is provided in the porous ceramic abradable layer by machining. A width of a rectangular section of the ceramic abradable layer divided by the slit groove may be set to a range of 2 to 7 mm.