摘要:
Disclosed are products and methods to facilitate the identification of compounds that are capable of interacting with biological macromolecules of interest, especially when such macromolecules are attached to a support surface in microarray. Aspects of the invention concern attachment chemistry, peptide labeling, antibody preparation, applications and so on.
摘要:
Disclosed are products and methods to facilitate the identification of compounds that are capable of interacting with biological macromolecules of interest, especially when such macromolecules are attached to a support surface in microarray. Aspects of the invention concern attachment chemistry, peptide labeling, antibody preparation, applications and so on.
摘要:
The present invention relates to a mutated pyruvate carboxylase gene from Corynebacterium. The mutant pyruvate carboxylase gene encodes a pyruvate carboxylase enzyme which is resistant to feedback inhibition from aspartic acid. The present invention also relates to a method of replacing the wild-type pyruvate carboxylase gene in Corynebacterium with this feedback-resistant pyruvate carboxylase gene. The present invention further relates to methods of the production of amino acids, preferably lysine, comprising the use of this mutant pyruvate carboxylase enzyme in microorganisms.
摘要:
Disclosed are products and methods to facilitate the identification of compounds that are capable of interacting with biological macromolecules of interest, especially when such macromolecules are attached to a support surface in microarray. Aspects of the invention concern attachment chemistry, peptide labeling, antibody preparation, applications and so on.
摘要:
A method for controlling and modifying biopolymer synthesis by manipulation of the genetics and enzymology of synthesis of polyhydroxybutyrate (PHB) and polyhydroxyalkanoate (PHA) polyesters at the molecular level in procaryotic and eukaryotic cells, especially plants. Examples demonstrate the isolation, characterization, and expression of the genes involved in the production of PHB and PHA polymers. Genes encoding the enzymes in the PHB and PHA synthetic pathway (beta-ketothiolase, acetoacetyl-CoA reductase and PHB polymerase or PHA polymerase) from Zoogloea ramigera strain I-16-M, Alcaligenes eutrophus, Nocardia salmonicolur, and Psuedomonas olevarans were identified or isolated and expressed in a non-PHB producing organism, E. coli. Specific modifications to the polymers include variation in the chain length of the polymers and incorporation of different monomers into the polymers to produce co-polymers with different physical properties.
摘要:
The present invention microscale bioreactors (microfermentors) and microscale bioreactor arrays for use in culturing cells. The microfermentors include a vessel for culturing cells and means for providing oxygen to the interior of the vessel at a concentration sufficient to support cell growth, e.g., growth of bacterial cells. Depending on the embodiment, the microfermentor vessel may have various interior volumes of less than approximately 1 ml. The microfermentors may include an aeration membrane and optionally a variety of sensing devices. Methods of using the microfermentors, e.g., to select optimum cell strains or bioprocess parameters are provided. The microbioreactors having a variety of different designs, some of which incorporate active fluid mixing and/or have the capability to operate in batch, fed-batch, or continuous mode. In certain embodiments the microreactors operate as microchemostats. Methods for culturing cells under chemostat conditions in a microbioreactor are also provided.
摘要:
The present invention provides novel compostions and methods of using the same for genetic manipulation of a variety of bacterial strains such as Rhodococcus.
摘要:
A method for controlling and modifying biopolymer synthesis by manipulation of the genetics and enzymology of synthesis of polyhydroxybutyrate (PHB) and polyhydroxyalkanoate (PHA) polyesters at the molecular level in procaryotic and eukaryotic cells, especially plants. Examples demonstrate the isolation, characterization, and expression of the genes involved in the production of PHB and PHA polymers. Genes encoding the enzymes in the PHB and PHA synthetic pathway (beta-ketothiolase, acetoacetyl-CoA reductase and PHB polymerase or PHA polymerase) from Zoogloea ramigera strain I-16-M, Alcaligenes eutrophus, Nocardia salmonicolur, and Psuedomonas olevarans were identified or isolated and expressed in a non-PHB producing organism, E. coli. Specific modifications to the polymers include variation in the chain length of the polymers and incorporation of different monomers into the polymers to produce co-polymers with different physical properties.