Abstract:
A sensing device exhibits a tunneling magneto-resistive (TMR) effect, and changes electrical resistance in response to a magnetic field. A first current carrying conductor is positioned in proximity to the TMR sensing device, such that upon an application of a sufficient current, a magnetic field is generated. The magnetic field is sufficiently strong and properly oriented so as to cause a magnetization of a soft magnetic layer of the TMR sensing device, thereby causing a change of the TMR sensing device from one bi-stable state to another bi-stable state.
Abstract:
Embodiments may comprise personal protective equipment with integrated physiological monitoring. Some embodiments may relate specifically to in-ear devices (such as hearing protection and/or communication devices) having one or more physiological sensors for early monitoring for heat related illnesses. Several embodiments may incorporate a temperature sensor and a speaker into such in-ear device.
Abstract:
Instrument-cartridge interfaces for fluidic analyzers that have an instrument and a removable cartridge are disclosed. For example, and in one illustrative embodiment, the instrument may include a needle that is adapted to penetrate a septum on a removable cartridge. In another illustrative embodiment, the instrument may include a plunger that is adapted to deform a deformable membrane on a removable cartridge. In yet another illustrative embodiment, the instrument may include a nozzle that is adapted to mate and seal with a flow channel on a removable cartridge. Techniques for detecting the flow rate in a flow channel on a removable cartridge, as well as the position of fluid in a flow channel of a removable cartridge, are also disclosed.
Abstract:
A system relating to sample analyzers, and more particular, to sample analyzers that are simple to operate and have a reduce risk of providing an erroneous result to a user. In some cases, the sample analyzer may be a portable sample analyzer that includes a disposable fluidic cartridge. The operators of the analyzers need not be trained.
Abstract:
Instrument-cartridge interfaces for fluidic analyzers that have an instrument and a removable cartridge are disclosed. For example, and in one illustrative embodiment, the instrument may include a needle that is adapted to penetrate a septum on a removable cartridge. In another illustrative embodiment, the instrument may include a plunger that is adapted to deform a deformable membrane on a removable cartridge. In yet another illustrative embodiment, the instrument may include a nozzle that is adapted to mate and seal with a flow channel on a removable cartridge. Techniques for detecting the flow rate in a flow channel on a removable cartridge, as well as the position of fluid in a flow channel of a removable cartridge, are also disclosed.
Abstract:
A method and apparatus for enabling chemical identification of individual particles, cells of molecules by obtaining a Raman spectrum of a particle, cell or molecule as it flows past a sensing point in a flow cytometer. The particles, which may be cells or molecules, are associated with a suitable noble metal colloid or colloidal aggregate. Cellular particles may be associated with gold or silver colloidal particles by ultra-sonic sonification while in a sample preparation reservoir containing the gold or silver colloidal suspension. The colloid associated particles are then hydrodynamically focused into a single file by a fluid control module. The surface-enhance Raman Spectrum of individual particles are obtained by illuminating the particle with a laser as the particle flows past a sensing point and gathering the light that is non-elastically scattered (Raman scattered) by the particle. The surface-enhanced Raman spectrum is then analyzed to identify the particle.
Abstract:
A flow sensor is provided having a substrate with a sensing element and flow channel over the sensing element. The sensing element senses at least one property of a fluid. The flow channel is configured such that tilting the flow sensor does not have a significant effect on the measured signal. A device for measuring tilt in a system having a fluid flow path is also provided.
Abstract:
A thermal fluid flow sensor and method of forming same. The flow sensor has an integrated circuit substrate, such as a silicon substrate, and a region of low thermal conductivity material carried on the top surface of the integrated circuit substrate. One or more pairs of temperature sensing elements are disposed on the low thermal conductivity region together with a heating element so that a robust flow sensor can be provided at low cost. Signal conditioning circuitry is disposed on the same surface as the temperature sensing elements and connected to the sensing elements thereby further reducing costs and improving the flow sensor sensitivity.
Abstract:
A system relating to sample analyzers, and more particular, to sample analyzers that are simple to operate and have a reduced risk of providing an erroneous result to a user. In some cases, the sample analyzer may be a portable sample analyzer that includes a disposable fluidic cartridge. The operators of the analyzers need not be trained.
Abstract:
Instrument-cartridge interfaces for fluidic analyzers that have an instrument and a removable cartridge are disclosed. For example, and in one illustrative embodiment, the instrument may include a needle that is adapted to penetrate a septum on a removable cartridge. In another illustrative embodiment, the instrument may include a plunger that is adapted to deform a deformable membrane on a removable cartridge. In yet another illustrative embodiment, the instrument may include a nozzle that is adapted to mate and seal with a flow channel on a removable cartridge. Techniques for detecting the flow rate in a flow channel on a removable cartridge, as well as the position of fluid in a flow channel of a removable cartridge, are also disclosed.