摘要:
The present invention generally relates to a sectioning module positioned within an automated solar cell device fabrication system. The solar cell device fabrication system is adapted to receive a single large substrate and form multiple silicon thin film solar cell devices from the single large substrate.
摘要:
The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
摘要:
Embodiments of the present invention generally relate to a method and apparatus for inspecting and analyzing the spacing of isolation trenches scribed in a solar module during the fabrication process. In one embodiment, images of the scribed trenches are captured and analyzed at various points in the fabrication process. The results may then be used either manually or in an automated fashion to diagnose, alter, and tune upstream processes for improved scribe spacing on subsequently processed solar modules.
摘要:
Provided are methods and apparatus for determining the crystal fraction of a casted-mono silicon wafer. A light source is directed at the wafer and the transmission or reflection is measured by a detector. An image of the wafer is generated by a processor and the crystal fraction is calculated from the generated image. The crystal fraction is correlated to the efficiency of the solar cell produced, allowing for the rejection of inferior wafers prior to processing.
摘要:
Embodiments of the present invention generally relate to a system used to form solar cell devices using processing modules adapted to perform one or more processes in the formation of the solar cell devices. In one embodiment, the system is adapted to form thin film solar cell devices by accepting a large unprocessed substrate and performing multiple deposition, material removal, cleaning, sectioning, bonding, and various inspection and testing processes to form multiple complete, functional, and tested solar cell devices that can then be shipped to an end user for installation in a desired location to generate electricity. In one embodiment, the system provides inspection of solar cell devices at various levels of formation, while collecting and using metrology data to diagnose, tune, or improve production line processes during the manufacture of solar cell devices.
摘要:
Embodiments of the present invention provide apparatus and method for inspecting a substrate. Particularly, embodiments of the present invention provide apparatus and method for detecting pinholes in one or more light absorbing films deposited on a substrate. One embodiment of the present invention provides an inspection station comprising an illumination assembly having a first light source providing light of wavelengths in a first spectrum and a second light source providing light of wavelengths in a second spectrum, wherein light in the first spectrum and second spectrum can be absorbed by light absorbing films on the substrate.
摘要:
The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
摘要:
Provided are methods and apparatus for determining the crystal fraction of a casted-mono silicon wafer. A light source is directed at the wafer and the transmission or reflection is measured by a detector. An image of the wafer is generated by a processor and the crystal fraction is calculated from the generated image. The crystal fraction is correlated to the efficiency of the solar cell produced, allowing for the rejection of inferior wafers prior to processing.
摘要:
Apparatus and methods for detecting residue on a glass substrate and method of use are disclosed. The apparatus comprises a substrate support, a sensor, a controller and a peripheral device in communication with the controller. The apparatus measures the height or thickness of a main surface and an edge delete surface of a substrate to determine if film residue is present on the edge delete surface.
摘要:
Apparatus and methods for detecting residue on a glass substrate and method of use are disclosed. The apparatus comprises a substrate support, a sensor, a controller and a peripheral device in communication with the controller. The apparatus measures the height or thickness of a main surface and an edge delete surface of a substrate to determine if film residue is present on the edge delete surface.