摘要:
A semiconductor process includes the following steps. A first gate structure and a second gate structure are formed on a substrate, wherein the top of the first gate structure includes a cap layer, so that the vertical height of the first gate structure is higher than the vertical height of the second gate structure. An interdielectric layer is formed on the substrate. A first chemical mechanical polishing process is performed to expose the top surface of the cap layer. A second chemical mechanical polishing process is performed to expose the top surface of the second gate structure or an etching process is performed to remove the interdielectric layer located on the second gate structure. A second chemical mechanical polishing process is then performed to remove the cap layer.
摘要:
A plurality of metal layers includes a top metal layer. An Ultra-Thick Metal (UTM) layer is disposed over the top metal layer, wherein no additional metal layer is located between the UTM layer and the top metal layer. A Metal-Insulator-Metal (MIM) capacitor is disposed under the UTM layer and over the top metal layer.
摘要:
A manufacturing method for a semiconductor device having a metal gate includes providing a substrate having at least a first semiconductor device formed thereon, forming a first gate trench in the first semiconductor device, forming a first work function metal layer in the first gate trench, and performing a decoupled plasma oxidation to the first work function metal layer.
摘要:
The present disclosure provides a method and system for modifying a doped region design layout during mask preparation to tune device performance. An exemplary method includes receiving an integrated circuit design layout designed to define an integrated circuit, wherein the integrated circuit design layout includes a doped feature layout; identifying an area of the integrated circuit for device performance modification, and modifying a portion of the doped feature layout that corresponds with the identified area of the integrated circuit during a mask preparation process, thereby providing a modified doped feature layout.
摘要:
A method of manufacturing a semiconductor device is disclosed. The exemplary method includes providing a substrate having a source region and a drain region. The method further includes forming a first recess in the substrate within the source region and a second recess in the substrate within the drain region. The first recess has a first plurality of surfaces and the second recess has a second plurality of surfaces. The method also includes epi-growing a semiconductor material in the first and second recesses and, thereafter, forming shallow isolation (STI) features in the substrate.
摘要:
A method of manufacturing a semiconductor device is disclosed. The exemplary method includes providing a substrate having a source region and a drain region. The method further includes forming a first recess in the substrate within the source region and a second recess in the substrate within the drain region. The first recess has a first plurality of surfaces and the second recess has a second plurality of surfaces. The method also includes epi-growing a semiconductor material in the first and second recesses and, thereafter, forming shallow isolation (STI) features in the substrate.
摘要:
A heat dissipation device includes a plurality of fins connected to each other and two heat pipes extending through the fins. Each fin includes a plate, an upper flange extending from a top side of the plate, a lower flange extending from a bottom side of the plate and an inner flange extending from an inner periphery of a groove defined in the plate. The fins include first fins and second fins having lengths larger than that of the first fins. The two heat pipes include a wide heat pipe and a narrow heat pipe. The wide heat pipe extends through the grooves and contacts the inner flanges of the first fins and the second fins. The narrow heat pipe extends through the grooves and contacts the inner flanges of the second fins.
摘要:
A plurality of metal layers includes a top metal layer. An Ultra-Thick Metal (UTM) layer is disposed over the top metal layer, wherein no additional metal layer is located between the UTM layer and the top metal layer. A Metal-Insulator-Metal (MIM) capacitor is disposed under the UTM layer and over the top metal layer.
摘要:
The present invention relates to a motor driving system. The motor driving system includes a motor, a transmission member, a follower member, a position-detecting light emitter, a position-detecting light receiver, and a positioning-status sensing element. The positioning-status sensing element includes a plurality of notches or openings. The positioning-status sensing element is moved between the position-detecting light emitter and the position-detecting light receiver such that a light beam emitted from the position-detecting light emitter is successively penetrated through the notches or openings to be received by the position-detecting light receiver. According to the light-receiving status of the position-detecting light receiver, the speed of the motor is reduced.
摘要:
A disc having a relief pattern and a transprint method thereof are provided. The transprint method for transprinting the relief pattern on a substrate of the disc includes the following steps. First, a transprint template is provided. A first surface of the transprint template has a complementary pattern corresponding to the relief pattern. Next, a pattern layer is formed on the substrate. Then, the transprint template is placed on and covers the pattern layer until the first surface of the transprint template closely contacts a second surface of the pattern layer, so that the relief pattern is formed on the second surface. Afterward, the pattern layer is cured by irradiation. Later, the transprint template is removed for exposing the second surface with the relief pattern.