Abstract:
A sensing system comprising a sensing assembly and a reader device is provided according to an embodiment of the disclosure. The sensing assembly comprises at least one sensing device and a plurality of sensors coupled to the at least one sensing device. The reader device is coupled to the sensing assembly. The sensing assembly is configured to sense a plurality of body temperatures of a user by the plurality of sensors, and the sensing assembly is further configured to transmit sensing data reflecting the sensed body temperatures to the reader device via a communication interface of the at least one sensing device.
Abstract:
An attachable monitoring device includes a battery unit, a wiring board unit and a physical condition sensor and an adhesive. The battery unit includes a top surface, a bottom surface and a plurality of side surfaces connecting the top surface and the bottom surface. The wiring board unit covers the top surface, the bottom surface and one of the side surfaces and electrically connected to the battery unit. The wiring board unit includes a printed antenna printed on a first outer surface of the wiring board unit. The physical condition sensor is disposed on a second outer surface of the wiring board unit opposite to the first outer surface. The physical condition sensor includes a sensing region for contacting a user to detecting a physical-condition signal of the user. The adhesive is disposed on the wiring board unit for being attached to the user.
Abstract:
A transfer component and a laser-assisted transfer system using the same are provided. The laser-assisted transfer system comprises: a multimode laser source; a beam transformer; a scanner module; and a transfer component. The beam transformer is capable of transforming a multimode laser beam generated from the multimode laser source into a rectangular beam and then feeding the rectangular beam into the scanner module to form a large-area scanning laser beam. The transfer component comprises a conductive thin film and an insulating thin film. The conductive thin film receives a scanning laser beam from the scanner module and is ablated while the ablation of the conductive thin film is transferred onto the insulating thin film. In an exemplary embodiment, the transfer component comprising a metal thin film and an organic thin film is used for enabling the system to perform large-area pattern transfer with high efficiency.
Abstract:
An attachable monitoring device includes a battery unit, a wiring board unit and a physical condition sensor and an adhesive. The battery unit includes a top surface, a bottom surface and a plurality of side surfaces connecting the top surface and the bottom surface. The wiring board unit covers the top surface, the bottom surface and one of the side surfaces and electrically connected to the battery unit. The wiring board unit includes a printed antenna printed on a first outer surface of the wiring board unit. The physical condition sensor is disposed on a second outer surface of the wiring board unit opposite to the first outer surface. The physical condition sensor includes a sensing region for contacting a user to detecting a physical-condition signal of the user. The adhesive is disposed on the wiring board unit for being attached to the user.
Abstract:
A method of fabricating a waveguide device is disclosed. The method includes providing a substrate having an elector-interconnection region and a waveguide region and forming a patterned dielectric layer and a patterned redistribution layer (RDL) over the substrate in the electro-interconnection region. The method also includes bonding the patterned RDL to a vertical-cavity surface-emitting laser (VCSEL) through a bonding stack. A reflecting-mirror trench is formed in the substrate in the waveguide region, and a reflecting layer is formed over a reflecting-mirror region inside the waveguide region. The method further includes forming and patterning a bottom cladding layer in a wave-tunnel region inside the waveguide region and forming and patterning a core layer and a top cladding layer in the waveguide region.
Abstract:
A method for forming gas barriers on electronic devices is provided. The fabrication method includes: providing a first substrate having at least one electronic device thereon; providing a second substrate and forming a gas barrier over the second substrate; disposing the second substrate over the first substrate, wherein the gas barrier faces the electronic device; providing an electromagnetic wave light source over the second substrate; and irradiating the second substrate by the electromagnetic wave light source to transfer the gas barrier to the electronic device and cover the electronic device.
Abstract:
A method for forming gas barriers on electronic devices is provided. The fabrication method includes: providing a first substrate having at least one electronic device thereon; providing a second substrate and forming a gas barrier over the second substrate; disposing the second substrate over the first substrate, wherein the gas barrier faces the electronic device; providing an electromagnetic wave light source over the second substrate; and irradiating the second substrate by the electromagnetic wave light source to transfer the gas barrier to the electronic device and cover the electronic device.
Abstract:
An optical bench on substrate includes a substrate and a trench formed inside the substrate and having a sloping side. A reflector layer is formed over the sloping side. An optical component is mounted over the substrate. The reflector layer is configured to reflect an electromagnetic wave to or from the optical component.
Abstract:
A noble metal nanoparticle can be grown on a semiconductor substrate by contacting a predetermined region of the substrate with a solution including noble metal ions. The predetermined region of the semiconductor substrate can be exposed by applying a polymeric layer over the substrate selectively removing a portion of the polymeric layer. The nanoparticles can be prepared in a predetermined pattern. Nanowires having a predetermined diameter and a predetermined position can be grown from the nanoparticles.
Abstract:
A noble metal nanoparticle can be grown on a semiconductor substrate by contacting a predetermined region of the substrate with a solution including noble metal ions. The predetermined region of the semiconductor substrate can be exposed by applying a polymeric layer over the substrate selectively removing a portion of the polymeric layer. The nanoparticles can be prepared in a predetermined pattern. Nanowires having a predetermined diameter and a predetermined position can be grown from the nanoparticles.