摘要:
A semiconductor device having a semiconductor substrate including a first region and a second region is provided. The semiconductor device further includes a gate electrode on the first region and having a first sidewall and a second sidewall, a first source region in the first region proximate to the first sidewall, a first drain region in the first region proximate to the second sidewall, an upper electrode on the second region and having a first sidewall and a second sidewall, a second source region in the second region proximate to the first sidewall of the upper electrode, and a second drain region in the second region proximate to the second sidewall of the upper electrode, wherein an impurity doping concentration of the first source region and the first drain region is greater than an impurity doping concentration of the second source region and the second drain region.
摘要:
A semiconductor device having a resistor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a first circuit region and a second circuit region. A lower interlayer insulating layer is provided over the semiconductor substrate. A first hole passing through the lower interlayer insulating layer in the first circuit region and a second hole passing through the lower interlayer insulating layer in the second circuit region are provided. A first semiconductor pattern and a second semiconductor pattern are sequentially stacked in the first hole. A first resistor having the same crystalline structure as the second semiconductor pattern is provided in the second hole.
摘要:
A non-volatile memory device includes a substrate, an insulating layer on the substrate, and a plurality of serially connected resistive memory cells stacked in the insulating layer such that a first one of the plurality of resistive memory cells is on the substrate and a next one of the plurality of resistive memory cells is on the first one of the plurality of resistive memory cells to define a NAND-type resistive memory cell string. A bit line on the insulating layer is electrically connected to a last one of the plurality of resistive memory cells. At least one of the plurality of resistive memory cells may include a switching device and a data storage element including a variable resistor connected in parallel with the switching device. Related devices and fabrication methods are also discussed.
摘要:
A non-volatile memory device includes a substrate, an insulating layer on the substrate, and a plurality of serially connected resistive memory cells stacked in the insulating layer such that a first one of the plurality of resistive memory cells is on the substrate and a next one of the plurality of resistive memory cells is on the first one of the plurality of resistive memory cells to define a NAND-type resistive memory cell string. A bit line on the insulating layer is electrically connected to a last one of the plurality of resistive memory cells. At least one of the plurality of resistive memory cells may include a switching device and a data storage element including a variable resistor connected in parallel with the switching device. Related devices and fabrication methods are also discussed.
摘要:
A phase change memory device and a write method thereof allow writing of both volatile and non-volatile data on the phase change memory device. The phase change memory device may be written by setting a write mode as one of a volatile write mode and a non-volatile write mode, and writing data as volatile or non-volatile by applying a write pulse corresponding to the write mode, wherein, when power is not supplied to the phase change memory device, the non-volatile data is retained and the volatile data is not retained.
摘要:
Double gate transistors having at least two polysilicon patterns on a thin body used as an active region and methods of forming the same are provided. Embodiments of the transistors and methods provided are capable of enhancing current drivability of a semiconductor memory device using polysilicon patterns having different impurity concentrations from each other. In some embodiments an active region is protruded from a semiconductor substrate, an impurity diffusion region is formed in the active region, and a gate insulating pattern and a gate pattern are sequentially stacked on the active region. In these embodiments, the gate pattern may include polysilicon patterns having different impurity concentrations from each other.
摘要:
A phase change memory device includes wordlines extending along a direction on a semiconductor substrate. Low concentration semiconductor patterns are disposed on the wordlines. Node electrodes are disposed on the low concentration semiconductor patterns. Schottky diodes are disposed between the low concentration semiconductor patterns and the node electrodes. Phase change resistors are disposed on the node electrodes.
摘要:
A non-volatile memory device includes a substrate, an insulating layer on the substrate, and a plurality of serially connected resistive memory cells stacked in the insulating layer such that a first one of the plurality of resistive memory cells is on the substrate and a next one of the plurality of resistive memory cells is on the first one of the plurality of resistive memory cells to define a NAND-type resistive memory cell string. A bit line on the insulating layer is electrically connected to a last one of the plurality of resistive memory cells. At least one of the plurality of resistive memory cells may include a switching device and a data storage element including a variable resistor connected in parallel with the switching device. Related devices and fabrication methods are also discussed.
摘要:
A semiconductor device capable of suppressing void migration is provided. The semiconductor device includes a dummy region extending in a first direction substantially perpendicular to a second direction in which a word line extends. In addition, an isolation layer pattern may not cut the dummy region in the second direction. Consequently, leaning of the dummy region and void migration are prevented. A method of fabricating the semiconductor device is also provided.
摘要:
In an embodiment, a semiconductor device includes a semiconductor substrate having an active region and a field region in contact with the active region. A trench isolation layer is formed within the semiconductor substrate of the field region to define the active region, and has a protrusion higher than a surface of the semiconductor substrate. A gate pattern is formed on and across the semiconductor substrate of the active region, and has a top surface disposed on substantially the same plane as a top surface of the trench isolation layer. A gate line is formed, which is self-aligned with the gate pattern to cover the gate pattern and extends over the trench isolation layer. A reduction in an effective channel length of the device due to excess trapped electrons is prevented.