摘要:
The invention includes: a new composition of matter (a composite comprising a naturally occurring in vivo cornea in an in situ eye together with at least one volume of vitrified non-naturally occurring corneal stromal tissue formed within the naturally occurring corneal stromal tissue) wherein the vitrified tissue is modified in structure and properties from its naturally occurring condition into a non-naturally occurring glass-like condition with modifications including but not limited to increased elastic modulus; methods for producing and using the new composition of matter for modifying corneal structure and properties, including but not limited to corneal optical aberrations; wound closure adhesion and transplant adhesion; and a photovitrification system for producing the new composition of matter comprising at least one photon source with controllable treatment parameters. A reverse template can be added to corneal vitrification systems to increase vitrification and modifications of structure and properties.
摘要:
The invention includes: a new composition of matter (a composite comprising a naturally occurring in vivo cornea in an in situ eye together with at least one volume of vitrified non-naturally occurring corneal stromal tissue formed within the naturally occurring corneal stromal tissue) wherein the vitrified tissue is modified in structure and properties from its naturally occurring condition into a non-naturally occurring glass-like condition with modifications including but not limited to increased elastic modulus; methods for producing and using the new composition of matter for modifying corneal structure and properties, including but not limited to corneal optical aberrations; wound closure adhesion and transplant adhesion; and a photo vitrification system for producing the new composition of matter comprising at least one photon source with controllable treatment parameters. A reverse template can be added to corneal vitrification systems to increase vitrification and modifications of structure and properties.
摘要:
In some embodiments, the instant invention provides for a system that includes at least the following components: (i) an Alexandrite laser pumping subsystem; where the Alexandrite laser pumping subsystem is configured to: 1) produce wavelengths between 700 and 820 nm, and 2) produce a pump pulse having: i) a duration between 1 to 10 milliseconds, and ii) an energy measuring up to 100 Joules; where the Alexandrite laser pumping subsystem includes: 1) an optical fiber, and 2) a Lens system, (ii) a Thulium doped Yttrium Aluminum Garnet (Tm:YAG) laser subsystem; where the Tm:YAG laser subsystem includes: 1) a Tm:YAG gain medium, 2) a rod heat sink, and 3) at least one cooling device, (iii) a wavelength selecting device, where the wavelength selecting device is configured to deliver a wavelength between 1.75 microns to 2.1 microns; and where the system is configured to produce a high energy conversion efficiency.
摘要:
A tunable solid-state laser system whose bandwidth and wavelength are controlled by the injection of light from a semiconductor diode laser. This laser system is capable of providing output light pulses over substantially all wavelength ranges in the electromagnetic spectrum. When suitably configured, it creates wavelength tunable (or fixed wavelength) pulses having spectral bandwidths that are Fourier transform limited and wavelength stabilized. The coupling means between the semiconductor diode laser and the ring laser cavity incorporates a means for optically isolating the diode laser source from optical feedback from the ring laser, ensuring diode laser source stability.
摘要:
Electronic excitation of polyatomic molecules followed by nonradiative decay provides states from which efficient multiphoton infrared excitation can be achieved. Initial (electronic) excitation can be molecule-specific or isotope-selective. Subsequent multiphoton excitation has a threshold which can be an order of magnitude or more lower than for multiphoton excitation from the ground state. By this method, laser-induced chemical reactions or isotope separation can be achieved with lower infrared laser fluence and/or higher concentration of polyatomic molecules than with prior art methods.
摘要:
The invention includes: a new composition of matter (a composite comprising a naturally occurring in vivo cornea in an in situ eye together with at least one volume of vitrified non-naturally occurring corneal stromal tissue formed within the naturally occurring corneal stromal tissue) wherein the vitrified tissue is modified in structure and properties from its naturally occurring condition into a non-naturally occurring glass-like condition with modifications including but not limited to increased eletastic modulus; methods for producing and using the new composition of matter for modifying cortical structure and properties, including but not limited to corneal optical aberrations; wound closure adhesion and transplant adhesion; and a photovitrification system for producing the new composition of matter comprising at least one photon source with controllable treatment parameters. A reverse template can be added to corneal vitrification systems to increase vitrification and modifications of structure and properties.
摘要:
In some embodiments, the instant invention provides for a system that includes at least the following components: (i) an Alexandrite laser pumping subsystem; where the Alexandrite laser pumping subsystem is configured to: 1) produce wavelengths between 700 and 820 nm, and 2) produce a pump pulse having: i) a duration between 1 to 10 milliseconds, and ii) an energy measuring up to 100 Joules; where the Alexandrite laser pumping subsystem includes: 1) an optical fiber, and 2) a Lens system, (ii) a Thulium doped Yttrium Aluminum Garnet (Tm:YAG) laser subsystem; where the Tm:YAG laser subsystem includes: 1) a Tm:YAG gain medium, 2) a rod heat sink, and 3) at least one cooling device, (iii) a wavelength selecting device, where the wavelength selecting device is configured to deliver a wavelength between 1.75 microns to 2.1 microns; and where the system is configured to produce a high energy conversion efficiency.
摘要:
The present invention encompasses an apparatus for pumping a laser (vibronic or otherwise), which comprises: a transition-metal ion-containing solid state laser gain medium; a means for exciting said laser medium to emit coherent radiation said exciting means being a pumping source comprising at least one laser diode operating at a wavelength shorter than 800 nm; and an optical resonator means for generating and controlling said coherent radiation.The present invention also encompasses a method of pumping a laser (vibronic or otherwise) comprising the steps of: generating a laser diode pumping beam at a wavelength shorter than 800 nm; exciting a transition-metal ion-containing solid state laser gain medium by impinging said laser diode pumping beam on said transition-metal ion-containing solid state laser gain medium, so as to excite the laser medium; and an optical resonator to emit coherent radiation.
摘要:
Rotational displacement of the birefringent lasing medium in a lasing cavity containing a polarizing element varies the spectral width of the generated laser light. The combination in a lasing cavity of a birefringent lasing medium, a polarizing element, a tuning element and a birefringent compensator permits output of narrow bandwidth spectrally tuned laser light continuously over the total gain bandwidth of the lasing medium by rotating the lasing medium, tuning to desired wavelength, and adjusting the birefringent compensator to optimize output of laser light.
摘要:
In some embodiments, the instant invention provides for a system for shaping a human cornea of an eye that includes at least the following components: a sapphire applanation window/suction ring (SAWSR) system, where the SAWSR system includes a sapphire applanation window/suction ring (SAWSR), a conical holder, an illuminator, and a temperature control, where the SAWSR system is configured to: (i) be positioned on the eye, (ii) applanate the human cornea of the eye, (iii) generate and position a centration aid, and (iv) maintain temperature control; an optical delivery system, where the optical delivery system includes: (i) a laser, (ii) a fiber delivery holder, and (iii) a laser control subsystem, where the laser control subsystem is configured to display a user interface to: 1) control a power and a temporal waveform of each of the beamlets of light, and 2) irradiate the human cornea of the eye.