摘要:
Methods of forming a gate electrode can be provided by forming a trench in a substrate, conformally forming a polysilicon layer to provide a polysilicon conformal layer in the trench defining a recess surrounded by the polysilicon conformal layer, wherein the polysilicon conformal layer is formed to extend upwardly from a surface of the substrate to have a protrusion and the protrusion has a vertical outer sidewall adjacent the surface of the substrate, forming a tungsten layer in the recess to form an upper surface that includes an interface between the polysilicon conformal layer and the tungsten layer, and forming a capping layer being in direct contact with top surfaces of the polysilicon conformal layer and the tungsten layer without any intervening layers.
摘要:
A method of forming a gate structure can be provided by forming a tunnel insulation layer on a substrate and forming a floating gate on the tunnel insulation layer. A dielectric layer pattern can be on the floating gate and a control gate can be formed on the dielectric layer pattern, which can be provided by forming a first conductive layer pattern on the dielectric layer pattern. A metal ohmic layer pattern can be formed on the first conductive layer pattern. A diffusion preventing layer pattern can be formed on the metal ohmic layer pattern. An amorphous layer pattern can be formed on the diffusion preventing layer pattern forming a second conductive layer pattern on the amorphous layer pattern. The floating gate can be further formed by forming an additional first conductive layer pattern on the tunnel insulation layer. An additional metal ohmic layer pattern can be formed on the additional first conductive layer pattern. An additional diffusion preventing layer can be formed pattern on the additional metal ohmic layer pattern. An additional amorphous layer pattern can be formed on the additional diffusion preventing layer pattern and an additional second conductive layer pattern can be formed on the additional amorphous layer pattern.
摘要:
A sputtering target includes a tungsten (W)-nickel (Ni) alloy, wherein the nickel (Ni) is present in an amount of between about 0.01 weight % and about 1 weight %.
摘要:
In an ohmic layer and methods of forming the ohmic layer, a gate structure including the ohmic layer and a metal wiring having the ohmic layer, the ohmic layer is formed using tungsten silicide that includes tungsten and silicon with an atomic ratio within a range of about 1:5 to about 1:15. The tungsten silicide may be obtained in a chamber using a reaction gas including a tungsten source gas and a silicon source gas by a partial pressure ratio within a range of about 1.0:25.0 to about 1.0:160.0. The reaction gas may have a partial pressure within a range of about 2.05 percent to about 30.0 percent of a total internal pressure of the chamber. When the ohmic layer is employed for a conductive structure, such as a gate structure or a metal wiring, the conductive structure may have a reduced resistance.
摘要:
Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
摘要:
Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. In one embodiment, the method comprises forming a plurality of preliminary gate electrode structures in a cell array region and a peripheral circuit region of a semiconductor substrate; forming selective epitaxial films on the semiconductor substrate in the cell array region and the peripheral region; implanting impurities into at least some of the selective epitaxial films to form elevated source/drain regions in the cell array region and the peripheral circuit region; forming a first interlayer insulating film; and patterning the first interlayer insulating film to form a plurality of first openings exposing the elevated source/drain regions. The method further comprises forming a first ohmic film, a first barrier film, and a metal film; and removing portions of each of the metal film, the first barrier film, and the first ohmic film.
摘要:
A semiconductor device may include a semiconductor substrate having first and second regions. A first gate structure on the first region of the semiconductor substrate may include a metal oxide dielectric layer on the first region of the semiconductor substrate and a first conductive layer on the metal oxide dielectric layer. First and second source/drain regions of a first conductivity type may be provided in the first region of the semiconductor substrate on opposite sides of the first gate structure. A second gate structure on the second region of the semiconductor substrate may include a silicon oxide based dielectric layer and a second conductive layer on the silicon oxide based dielectric layer. First and second source/drain regions of a second conductivity type may be provided in the second region of the semiconductor substrate on opposite sides of the second gate structure, wherein the first and second conductivity types are different. Related methods are also discussed.
摘要:
Methods of forming a gate electrode can be provided by forming a trench in a substrate, conformally forming a polysilicon layer to provide a polysilicon conformal layer in the trench defining a recess surrounded by the polysilicon conformal layer, wherein the polysilicon conformal layer is formed to extend upwardly from a surface of the substrate to have a protrusion and the protrusion has a vertical outer sidewall adjacent the surface of the substrate, forming a tungsten layer in the recess to form an upper surface that includes an interface between the polysilicon conformal layer and the tungsten layer, and forming a capping layer being in direct contact with top surfaces of the polysilicon conformal layer and the tungsten layer without any intervening layers.
摘要:
Provided are semiconductor devices and methods of fabricating the same, and more specifically, semiconductor devices having a W—Ni alloy thin layer that has a low resistance, and methods of fabricating the same. The semiconductor devices include the W—Ni alloy thin layer. The weight of Ni in the W—Ni alloy thin layer may be in a range from approximately 0.01 to approximately 5.0 wt % of the total weight of the W—Ni alloy thin layer.
摘要:
Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.