Abstract:
An object of the invention is to provide an engine system driving an engine by using a hydrogen rich gas generated from a medium chemically repeating a hydrogen absorption and a hydrogen desorption as one of fuels, in which the engine system can efficiently generate a hydrogen rich gas from the medium. In an engine system which mounts a medium chemically repeating a hydrogen absorption and a hydrogen desorption thereon, is provided with a hydrogen supplying apparatus generating or storing a hydrogen rich gas from the medium, and drives an engine by using the hydrogen rich gas as one of fuels, the engine system has a detecting portion detecting an operating state of the engine, and a medium supplying amount control means controlling a supplying amount of the medium supplied to the hydrogen supplying apparatus in correspondence to a result of detection of the detecting portion.
Abstract:
An object of the invention is to provide an engine system driving an engine by using a hydrogen rich gas generated from a medium chemically repeating a hydrogen absorption and a hydrogen desorption as one of fuels, in which the engine system can efficiently generate a hydrogen rich gas from the medium. In an engine system which mounts a medium chemically repeating a hydrogen absorption and a hydrogen desorption thereon, is provided with a hydrogen supplying apparatus generating or storing a hydrogen rich gas from the medium, and drives an engine by using the hydrogen rich gas as one of fuels, the engine system has a detecting portion detecting an operating state of the engine, and a medium supplying amount control means controlling a supplying amount of the medium supplied to the hydrogen supplying apparatus in correspondence to a result of detection of the detecting portion.
Abstract:
This invention provides an electroless copper plating solution using glyoxylic acid as a reducing agent, which is small in the reacting quantity of Cannizzaro reaction, does not largely cause precipitation of the salt accumulated in the electroless copper plating solution by the plating reaction and Cannizzaro reaction, and can be used stably over a long period of time. The electroless copper plating solution comprises copper ion, a complexing agent for copper ion, a reducing agent for copper ion and a pH adjusting agent, wherein said reducing agent for copper ion is glyoxylic acid or a salt thereof, said pH adjusting agent is potassium hydroxide and said electroless copper plating solution contains at least one member selected from metasilicic acid, metasilicic acid salt, germanium dioxide, germanic acid salt, phosphoric acid, phosphoric acid salt, vanadic acid, vanadic acid salt, stannic acid and stannic acid salt in an amount of 0.0001 mol/L or more.
Abstract:
A hydrogen supply device which generates hydrogen from hydrogen storing material which chemically stores hydrogen by a catalyst, wherein said device comprises valves on the fuel supply port and the exhaust port, and a valve controller which controls timing to opening and close the valves Fuel supply pressure is 2 to 20 atm. Hydrogen generation pressure is 5 to 300 atm. Exhaust pressure is atmospheric pressure to 0.01 atm.
Abstract:
Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
Abstract:
Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
Abstract:
An electroless copper plating solution using glyoxylic acid as a reducing agent, which is small in the reacting quantity of Cannizzaro reaction, does not largely cause precipitation of the salt accumulated in the electroless copper plating solution by the plating reaction and Cannizzaro reaction, and can be used stably over a long period of time. The electroless copper plating solution comprises copper ion, a complexing agent for copper ion, a reducing agent for copper ion and a pH adjusting agent, wherein the reducing agent for copper ion is glyoxylic acid or a salt thereof, the pH adjusting agent is potassium hydroxide and the electroless copper plating solution contains at least one member selected from metasilicic acid, metasilicic acid salt, germanium dioxide, germanic acid salt, phosphoric acid, phosphoric acid salt, vanadic acid, vanadic acid salt, stannic acid and stannic acid salt in an amount of 0.0001 mol/L or more.
Abstract:
An electroless copper plating solution using glyoxylic acid as a reducing agent, which is small in the reacting quantity of Cannizzaro reaction, does not largely cause precipitation of the salt accumulated in the electroless copper plating solution by the plating reaction and Cannizzaro reaction, and can be used stably over a long period of time. The electroless copper plating solution comprises copper ion, a complexing agent for copper ion, a reducing agent for copper ion and a pH adjusting agent, wherein the reducing agent for copper ion is glyoxylic acid or a salt thereof, the pH adjusting agent is potassium hydroxide and the electroless copper plating solution contains at least one member selected from metasilicic acid, metasilicic acid salt, germanium dioxide, germanic acid salt, phosphoric acid, phosphoric acid salt, vanadic acid, vanadic acid salt, stannic acid and stannic acid salt in an amount of 0.0001 mol/L or more.
Abstract:
Recovery of dehydrogenation product must be done separately from supply of hydrogen fuel. However, there is a problem that it takes much time when dehydrogenation product recovery and fuel filling are done separately. A fuel filling/waste solution recovery apparatus includes measuring means to measure a volume of supplied fuel and a volume of recovered waste solution by measuring flow rates of solutions passing through a fuel filling nozzle and a recovery nozzle or piping, and a display which shows the volume of supplied fuel and the volume of recovered waste solution which are measured by the measuring means.
Abstract:
Managing system for emissions environmental pollutants comprising: a measuring device for measuring a flow rate of a fuel supplied to a customer; an unit emission quantity storage device of environmentally influential substance for storing a unit emission quantity of an environmentally influential substance emitted when an unit flow rate of fuel is manufactured or processed; and an emission quantity computing device of environmentally influential substance for calculating, based on the fuel flow rate measured by the measuring device, and the unit emission quantity of the environmentally influential substance stored by the unit emission quantity storage device, an environmental emission quantity of the environmentally influential substance emitted when the fuel supplied to the customer is manufactured or processed.