Method for forming a low-defect epitaxial layer in the fabrication of semiconductor devices
    2.
    发明授权
    Method for forming a low-defect epitaxial layer in the fabrication of semiconductor devices 失效
    在半导体器件的制造中形成低缺陷外延层的方法

    公开(公告)号:US06306675B1

    公开(公告)日:2001-10-23

    申请号:US09414953

    申请日:1999-10-08

    Abstract: In semiconductor devices such as laser diodes (LD) and light emitting diodes (LED) based on gallium nitride thin films, low defect density is desired in the gallium nitride film. In the fabrication of such devices on a silicon carbide substrate surface, the gallium nitride film is formed on the silicon carbide substrate after the substrate surface is etched using hydrogen at an elevated temperature. In another embodiment, an aluminum nitride film is formed as a buffer layer between the gallium nitride film and the silicon carbide substrate, and, prior to aluminum nitride formation, the substrate surface is etched using hydrogen at an elevated temperature.

    Abstract translation: 在基于氮化镓薄膜的激光二极管(LD)和发光二极管(LED)等半导体器件中,氮化镓膜中需要低缺陷密度。 在碳化硅衬底表面上制造这种器件时,在高温下使用氢气蚀刻衬底表面之后,在碳化硅衬底上形成氮化镓膜。 在另一个实施例中,氮化铝膜形成为氮化镓膜和碳化硅衬底之间的缓冲层,并且在形成氮化铝之前,使用氢在高温下蚀刻衬底表面。

    Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer
    4.
    发明授权
    Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer 有权
    通过反射晶格匹配的二硼化硼缓冲层在硅衬底上外延生长III族氮化物

    公开(公告)号:US07781356B2

    公开(公告)日:2010-08-24

    申请号:US10545484

    申请日:2004-02-12

    Abstract: A semiconductor structure and fabrication method is provided for integrating wide bandgap nitrides with silicon. The structure includes a substrate, a single crystal buffer layer formed by epitaxy over the substrate and a group III nitride film formed by epitaxy over the buffer layer. The buffer layer is reflective and conductive. The buffer layer may comprise B an element selected from the group consisting of Zr, Hf, Al. For example, the buffer layer may comprise ZrB2, AlB2 or HfB2. The buffer layer provides a lattice match with the group III nitride layer. The substrate can comprise silicon, silicon carbide (SiC), gallium arsenide (GaAs), sapphire or Al2O3. The group III nitride material includes GaN, AlN, InN, AlGaN, InGaN or AlInGaN and can form an active region. In a presently preferred embodiment, the buffer layer is ZrB2 and the substrate is Si(111) or Si(100) and the group III nitride layer comprises GaN. The ZrB2 buffer layer provides a reflective and conductive buffer layer that has a small lattice mismatch with GaN. The semiconductor structure can be used to fabricate active microelectronic devices, such as transistors including field effect transistors and bipolar transistors. The semiconductor structure also can be used to fabricate optoelectronic devices, such as laser diodes and light emitting diodes.

    Abstract translation: 提供了一种用于将宽带隙氮化物与硅结合的半导体结构和制造方法。 该结构包括衬底,通过衬底上的外延形成的单晶缓冲层和通过缓冲层上的外延形成的III族氮化物膜。 缓冲层是反射和导电的。 缓冲层可以包含选自由Zr,Hf,Al组成的组的元素。 例如,缓冲层可以包括ZrB2,AlB2或HfB2。 缓冲层提供与III族氮化物层的晶格匹配。 衬底可以包括硅,碳化硅(SiC),砷化镓(GaAs),蓝宝石或Al2O3。 III族氮化物材料包括GaN,AlN,InN,AlGaN,InGaN或AlInGaN,并且可以形成有源区。 在目前优选的实施方案中,缓冲层是ZrB 2,衬底是Si(111)或Si(100),III族氮化物层包括GaN。 ZrB2缓冲层提供与GaN具有小的晶格失配的反射和导电缓冲层。 半导体结构可用于制造有源微电子器件,例如包括场效应晶体管和双极晶体管的晶体管。 该半导体结构也可用于制造诸如激光二极管和发光二极管之类的光电器件。

    Low temperature epitaxial growth of quaternary wide bandgap semiconductors
    6.
    发明授权
    Low temperature epitaxial growth of quaternary wide bandgap semiconductors 失效
    四元宽带隙半导体的低温外延生长

    公开(公告)号:US06911084B2

    公开(公告)日:2005-06-28

    申请号:US09981024

    申请日:2001-10-16

    Abstract: A method of growing quaternary epitaxial films having the formula YCZN wherein Y is a Group IV element and Z is a Group III element at temperatures in the range 550-750° C. is provided. In the method, a gaseous flux of precursor H3YCN and a vapor flux of Z atoms are introduced into a gas-source molecular beam epitaxial (GSMBE) chamber where they combine to form thin film of YCZN on the substrate. Preferred substrates are silicon, silicon carbide and AlN/silicon structures. Epitaxial thin film SiCAlN and GeCAlN are provided. Bandgap engineering may be achieved by the method by adjusting reaction parameters of the GSMBE process and the relative concentrations of the constituents of the quaternary alloy films. Semiconductor devices produced by the present method have bandgaps from about 2 eV to about 6 eV and exhibit a spectral range from visible to ultraviolet which makes them useful for a variety of optoelectronic and microelectronic applications. Large-area substrates for growth of conventional Group III nitrides and compounds are produced by SiCAlN deposited on large-diameter silicon wafers. The quaternary compounds, especially the boron containing compounds, exhibit extreme hardness. These quaternary compounds are radiation resistant and may be used in space exploration.

    Abstract translation: 提供了在550-750℃的温度下生长具有式YCZN的四元外延膜的方法,其中Y是IV族元素,Z是III族元素。 在该方法中,将前体H 3 YCN的气体流量和Z原子的蒸气通量引入气体分子束外延(GSMBE)室中,在其中它们结合形成YCZN的薄膜, 底物。 优选的衬底是硅,碳化硅和AlN /硅结构。 提供外延薄膜SiCA1N和GeCA1N。 通过调整GSMBE工艺的反应参数和四元合金薄膜成分的相对浓度,可以通过该方法实现带隙工程。 通过本方法制造的半导体器件具有约2eV至约6eV的带隙,并且具有从可见到紫外线的光谱范围,使得它们可用于各种光电子和微电子应用。 用于生长常规III族氮化物和化合物的大面积衬底由沉积在大直径硅晶片上的SiCAlN产生。 四元化合物,特别是含硼化合物,具有极高的硬度。 这些四元化合物具有耐辐射性,可用于太空探索。

    Method for growing Si-Ge semiconductor materials and devices on substrates
    7.
    发明授权
    Method for growing Si-Ge semiconductor materials and devices on substrates 有权
    在衬底上生长Si-Ge半导体材料和器件的方法

    公开(公告)号:US08821635B2

    公开(公告)日:2014-09-02

    申请号:US11662669

    申请日:2005-04-08

    Abstract: Si—Ge materials are grown on Si(100) with Ge-rich contents (Ge>50 at. %) and precise stoichiometries SiGe, SiGe2, SiGe3 and SiGe4. New hydrides with direct Si—Ge bonds derived from the family of compounds (H3Ge)xSiH4-x (x=1-4) are used to grow uniform, relaxed, and highly planar films with low defect densities at unprecedented low temperatures between about 300-450° C. At about 500-700° C., SiGex quantum dots are grown with narrow size distribution, defect-free microstructures and highly homogeneous elemental content at the atomic level. The method provides for precise control of morphology, composition, structure and strain. The grown materials possess the required characteristics for high frequency electronic and optical applications, and for templates and buffer layers for high mobility Si and Ge channel devices.

    Abstract translation: Si-Ge材料在具有富锗含量(Ge> 50at。%)和精确化学计量的SiGe,SiGe2,SiGe3和SiGe4的Si(100)上生长。 使用衍生自化合物系列(H3Ge)xSiH4-x(x = 1-4)的直接Si-Ge键的新型氢化物在前所未有的低温下生长具有低缺陷密度的均匀,松弛和高平面的膜,约为300 在约500-700℃下,SiGex量子点以较小的分布,无缺陷的微结构和原子级的高均匀元素含量生长。 该方法提供形态,组成,结构和应变的精确控制。 生长的材料具有高频电子和光学应用所需的特性,以及用于高迁移率Si和Ge通道器件的模板和缓冲层。

Patent Agency Ranking