摘要:
A multilayer coating and a method for fabricating a multilayer coating on a substrate (3). The coating is arranged to minimize diffusion of atoms through the coating, the method comprising the steps of introducing a substrate (3) to a reaction space, depositing a layer of first material (1) on the substrate (3), and depositing a layer of second material (2) on the layer of first material (1). Depositing the layer of first material (1) and the layer of second material (2) comprises alternately introducing precursors into the reaction space and subsequently purging the reaction space after each introduction of a precursor. The first material being selected from the group of titanium oxide and aluminum oxide, the second material being the other from the group of titanium oxide and aluminum oxide. An interfacial region is formed in between titanium oxide and aluminum oxide.a.
摘要:
A precursor delivery system includes a flow path from a precursor container to a reaction space of a thin film deposition system, such as an atomic layer deposition (ALD) reactor. A staging volume is preferably established between the precursor container and the reaction space for receiving at least one dose of the precursor material from the precursor container, and from which pulses are released toward the reaction space. A pulse control device is preferably interposed between the staging volume and the reaction space. A sensor may sense a physical condition in the staging volume for providing feedback to a controller of the precursor delivery system, for performance monitoring and control.
摘要:
The invention relates to a multilayer material deposited by ALD. A multi-layer structure of a high refractive index material is deposited on a substrate using ALD at a temperature below about 450° C. Advantageous results are obtained when a high refractive index material A is coated with another material B after a certain thickness of material A has been achieved. Thus, the B barrier layer stops the tendency for material A to crystallize. The amorphous structure gives rise to less optical loss. Further, the different stress nature of materials A and B may be utilized to achieve a final optical material with minimal stress. The thickness of each material B layer is less than that of the adjacent A layer(s). The total effective refractive index of the high refractive index material A+B being shall be greater than 2.20 at a wavelength of 600 nm. Titanium oxide and aluminium oxide are preferred A and B materials. The structure is useful for optical coatings.
摘要:
A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).
摘要:
The present invention relates to a method for enhancing uniformity of metal oxide coatings formed by Atomic Layer Deposition (ALD) or ALD-type processes. Layers are formed using alternating pulses of metal halide and oxygen-containing precursors, preferably water, and purging when necessary. An introduction of modificator pulses following the pulses of the oxygen-containing precursor affects positively on layer uniformity, which commonly exhibits gradients, particularly in applications with closely arranged substrates. In particular, improvement in layer thickness uniformity is obtained. According to the invention, alcohols having one to three carbon atoms can be used as the modificator.
摘要:
The invention relates to a multilayer material deposited by ALD. A multi-layer structure of a high refractive index material is deposited on a substrate using ALD at a temperature below about 450° C. Advantageous results are obtained when a high refractive index material A is coated with another material B after a certain thickness of material A has been achieved. Thus, the B barrier layer stops the tendency for material A to crystallize. The amorphous structure gives rise to less optical loss. Further, the different stress nature of materials A and B may be utilized to achieve a final optical material with minimal stress. The thickness of each material B layer is less than that of the adjacent A layer(s). The total effective refractive index of the high refractive index material A+B being shall be greater than 2.20 at a wavelength of 600 nm. Titanium oxide and aluminium oxide are preferred A and B materials. The structure is useful for optical coatings.
摘要:
The present invention relates to a method for enhancing uniformity of metal oxide coatings formed by Atomic Layer Deposition (ALD) or ALD-type processes. Layers are formed using alternating pulses of metal halide and oxygen-containing precursors, preferably water, and purging when necessary. An introduction of modificator pulses following the pulses of the oxygen-containing precursor affects positively on layer uniformity, which commonly exhibits gradients, particularly in applications with closely arranged substrates. In particular, improvement in layer thickness uniformity is obtained. According to the invention, alcohols having one to three carbon atoms can be used as the modificator.
摘要:
The invention relates to a method and an apparatus for coating one or more objects (1) by exposing an object (1) to alternately repeating surface reactions of two or more gaseous precursors. The apparatus comprises a reaction chamber (2, 40), means for forming at least one distinct precursor region inside the reaction chamber, and means for causing translational, essentially mechanically unsupported and unsuspended, motion of an object (1) inside the reaction chamber, relative to the reaction chamber, for bringing the surface of the object (1) into contact with a gaseous precursor, the means for causing the translational motion comprising means for moving the object (1) essentially through the at least one distinct precursor region inside the reaction chamber.
摘要:
A precursor delivery system includes a flow path from a precursor container to a reaction space of a thin film deposition system, such as an atomic layer deposition (ALD) reactor. At least a portion of the flow path may be formed in one or more blocks of thermally conductive material forming an elongate thermally conductive body extending from the precursor container toward the reaction space. In some embodiments, a heater is thermally associated with the thermally conductive body to inhibit condensation of precursor vapor in the flow path. A high conductivity particle filter having inertial traps is preferably included for filtering particles from the precursor material. The particle filter preferably include a filter passage including turns and inertial traps adjacent the turns. In some embodiments, the filter passage and the inertial traps may be formed in the thermally conductive body between the precursor container and the reaction space.
摘要:
The present invention relates to an apparatus, method, a reaction chamber and a use of a reaction chamber for processing a surface of a substrate by subjecting the surface of a substrate to successive surface reactions of at least a first precursor and a second precursor. The apparatus includes a vacuum chamber; a detachable reaction chamber arranged to be installed inside the vacuum chamber, and inside which the substrate is positioned during processing and a precursor system for supplying the at least first and second precursors into the action chamber and for discharging the at least first and second precursors from the reaction chamber. According to the present invention the reaction chamber is provided as a gastight vessel.