Abstract:
An immobilizing device for biological material comprises a rigid support (12) carrying a substrate layer (20, 20′) of polymer having biological immobilizing properties, e.g. for amino and nucleic acids. Substantially solid ultra-thin substrate layers (20′) having a thickness less than about 5 micron, preferably between about 0.1 and 0.5 micron, and microporous, ultra-thin substrate layers (20′) having a thickness less than about 5 micron, preferably less than 3 micron, 2 or 1 micron are shown, which may be segmented by isolating moats M. The substrate layer is on a microscope slide (302), round disc (122), bio-cassette, at the bottom of a well of a multiwell plate, and as a coating inside a tube. Fluorescence or luminescence intensity and geometric calibration spots (420) are shown. Reading is enhanced by the intensity calibration spots (420) to enable normalization of readings under uneven illumination conditions, as when reading by dark field, side illumination mode. The reference spots are shown being printed simultaneously with printing an array of biological spots or with the same equipment. Methods of forming layers of the device include controlled drawing from a bath of coating composition and drying, and spinning of C-D shaped substrates. Post-forming treatment is shown by corona treatment and radiation. Adherent metal oxides (14), silica-based materials and other materials are used to unite layers of the composite. In multiwell plates the oxide promotes joining of a bottom plate (95, 95′) and upper, well-defining structure (94) of dissimilar material. The oxides (14) also provide beneficial opacity to prevent light entering the glass support, for applying potential to the substrate, etc.
Abstract:
A device for optical examination of biological materials using radiation of a selected wavelength includes a substrate having a first surface and a second surface opposite to the first surface. The first surface includes a dense array of micro-optical elements arranged to provide increased intensity radiation or evanescent radiation. The first surface is in close proximity to the biological material being examined.
Abstract:
Microscopes, including viewing and other microscopic systems, employ a hinged, tiltable plate to adjust focus on a flat object such as a microscope slide or biochip by motion, achieved by tilting, which is substantially normal to the focus point on the plane of the object. By employing two such tiltable arrangements, relatively long scan lines of e.g., flying objective, single pixel on-axis scanning can be accommodated. The tilting support plate is specifically constructed to provide tailored locations for different objects in series along the Y axis of the plate. The plate can accommodate beaters and cooled plates and/or the flat object being examined. In a fluorescence scanning microscope, locations are specifically adapted to receive microscope slides and biochip cartridges such as Affymetrix's “Gene Chip®”. A scanning microscope under computer control, employing such a focusing action, enables unattended scanning of biochips with a simple and economical instrument. Also shown are flexure-mounting of a support plate to define the hinge axis, techniques for automatically determining position and focus, and a rotatably oscillating flying micro-objective scanner combined with the tilting plane focus system. Construction and control techniques are shown that realize simple and accurate focusing. Methods of examination of biological materials are disclosed. Simple and efficient focused scanning with a flying micro-objective of ordered arrays of nucleotides and nucleic acid fragments carried upon a microscope slide or other substrate is disclosed. Quantified fluorescence imaging is economically achieved by combined use of the described scanning and focusing arrangement and use of simple and accurate calibration modules respectively for example for Affymetrix's “Gene Chip” microarray modules and for microscope slides.
Abstract:
A fluid deposit assembly mounted on a carrier for depositing minute drops of fluid at selected locations upon a substrate, comprising a deposit element having an exposed tip of diameter of 0.3 mm or less constructed and arranged to carry and deposit drops of fluid upon the substrate, stable lateral reference surfaces or surface portions exposed for engagement by the deposit element, the surfaces or surface portions being constructed and arranged to prevent X, Y displacement of the deposit element relative to the carrier when the deposit element is urged thereagainst and design for urging the deposit element against the reference surfaces or surface portions at least at the time that the deposit element approaches a substrate to deposit a fluid drop. The reference surfaces or surface portions and the design for urging are cooperating to precisely position the deposit tip in a precisely desired position as it contacts the substrate. The deposit element is shown as the tip of an axially moveable pin. The reference surface portion is shown, among others, as a surface of revolution whose axis is disposed at a predetermined position relative to the carrier. A mobile supply in the form of a multiwell plate is moved under computer control to be a close companion of the deposit device, enabling rapid deposit action and avoidance of evaporative effects that can alter the consistency of dots in the array being formed. The device can deposit one dot on top of another from fluid in a mobile multiwell plate that moves to be close to the deposit device.
Abstract:
An analog optical position transducer for detecting angular position of a rotatable member of a motor. The transducer includes a plurality of sensing surfaces placed in one frame of reference and a modulator located in another frame of reference, one of the frames of reference being stationary and the other moving with the rotatable member. The relative angular position of the two frames of reference is determined from the amount of light varied by the modulator and detected by the sensing surfaces. The modulator employs a radiation source which is located on a diffusive surface or which irradiates the diffusive surface of the modulator. Radiation emitted from the diffusive surface is modulated by the modulator depending on the relative position of the modulator and the sensing surfaces. A lens focuses the emitted radiation onto the sensing surfaces. The sensing surfaces are symmetrically arranged about an axis passing through the center of rotation of the rotor, and their relative distribution with respect to the surfaces of the modulator enables differential detection. An analog circuit connected to the sensing surfaces continuously determines the angular position of the rotatable member from the amount of light detected at each of the sensing surfaces. The system is effective to accurately position a mirror in a high speed laser scanner.
Abstract:
Radial free play is reduced in rotor bearings of a limited rotation electromechanical actuator of the kind having a stator assembly with a plurality of stator pole faces, a rotor with a plurality of rotor pole faces, two bearings supporting opposite ends of the rotor and means for establishing magnetic flux across the gaps. In various aspects, the stator and rotor pole faces are cylindrical and the central axis of the rotor pole faces is tilted relative to the central axis of the stator pole faces; a region of a gap between the stator and rotor pole faces produces both the radial free-play-reducing forces and at least part of the driving torque; the gap rotor varies in size along its length but nowhere is so great as to have an effectively infinite reluctance; the gap varies continuously along its length; and each bearing has radial free play equal to at least 10% of twice the difference in the diameters of the stator and rotor pole faces.
Abstract:
A limited-rotation actuator in which the rotor pole faces and corresponding stator pole faces are spaced apart along the axis of rotation, the rotor pole faces are permeably connected by a flux path having an axial component through the rotor, and the rotor and stator pole faces each subtend an angle of between about 90.degree. and about 180.degree. around the axis. The invention enables wide angle excursions of the rotor and inexpensive fabrication.
Abstract:
A subfractional horsepower permanent magnet synchronous motor comprises an annular stator and a cup-form permanent magnet rotor defining an internal cylindrical volume. The rotor is supported for rotation within the stator about the axis of the motor and with an annular air gap between the stator and the cup-form rotor, and means including a stator coil is adapted to be energized to rotate the rotor relative to the stator. An output shaft coaxial with the rotor extends outwardly from one end of the stator, and a stationary support bushing for the output shaft extends into the internal volume defined by the rotor. A gear train is mounted in the space between the inward end of the support bushing and the closed end of the cup-form rotor, and is coupled between the rotor and the output shaft to provide a predetermined speed reduction ratio between the rotor and the output shaft. The gear train comprises at least three gear members, a first gear member cantilever mounted from the stationary support bushing, a second gear member cantilever mounted from the closed end of the cup-form rotor, and a third gear member mounted from said output shaft, one of the gear members comprising a cluster of two gears mounted in offset relation to the output shaft and the other two gear members being coaxial with the output shaft.
Abstract:
An independent blood filter device depends on flow geometry to deliver blood serum or plasma free of detrimental levels of hemoglobin. It depends critically on an upstream flow rate or pressure differential limiting control element or device that limits the rate of change of pressure differential across the filter element. Pre-evacuated versions can be used to simultaneously draw blood from a living being and provide pressure differential across the filter element between an evacuated collector and a supply end open to atmosphere. A unit pressurized by hand motion employs the external shape of a partially filled blood collection tube as a piston to produce pressure in advance of the control element or device to create the pressure differential across the filter element to a collector vented to atmosphere. The control element or device is disclosed in numerous forms, including specially sized flow constrictions and compliant arrangements.
Abstract:
An independent blood filter device depends on flow geometry to deliver blood serum or plasma free of detrimental levels of hemoglobin. It depends critically on an upstream flow rate or pressure differential limiting control element or device that limits the rate of change of pressure differential across the filter element. Pre-evacuated versions can be used to simultaneously draw blood from a living being and provide pressure differential across the filter element between an evacuated collector and a supply end open to atmosphere. A unit pressurized by hand motion employs the external shape of a partially filled blood collection tube as a piston to produce pressure in advance of the control element or device to create the pressure differential across the filter element to a collector vented to atmosphere. The control element or device is disclosed in numerous forms, including specially sized flow constrictions and compliant arrangements.