摘要:
A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
摘要:
We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
摘要:
Disclosed herein is an easy and well-integrated method of etching features to different depths in a crystalline substrate, such as a single-crystal silicon substrate. The method utilizes a specialized masking process and takes advantage of a highly selective etch process. The method provides a system of interconnected, variable depth reservoirs and channels. The plasma used to etch the channels may be designed to provide a sidewall roughness of about 200 nm or less. The resulting structure can be used in various MEMS applications, including biomedical MEMS and MEMS for semiconductor applications.
摘要:
Microstructure devices, methods of forming a microstructure device and a method of forming a MEMS device are described. According to one aspect, a microstructure device includes: a semiconductive substrate; a monolithic microstructure device feature coupled with the semiconductive substrate, and wherein at least a portion of the microstructure device feature is configured to move relative to the semiconductive substrate; and a conductive structure provided directly upon the microstructure device feature.
摘要:
Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises pretreating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures.
摘要:
A method for processing a substrate disposed in a substrate processing chamber to modify the contour of a trench formed on the substrate. The substrate processing chamber is the type that has a coil and a plasma generation system including a source power system operatively coupled to the coil and a bias power system operatively coupled to the substrate process chamber. The method includes transferring the substrate into the substrate process chamber. Thereafter, the substrate is exposed to a plasma formed from a first process gas consisting essentially of a sputtering agent by applying RF energy from the source power system to the coil. The plasma is biased toward the substrate by applying bias power to the substrate process chamber. Thereafter, the substrate is exposed to a plasma formed from a second process gas without applying bias power or applying minimal bias power to the substrate process chamber.
摘要:
A preferred embodiment of the plasma reactor of the present invention provides a chamber adapted to process a workpiece having at least one wall capable of allowing inductive power coupling into the reactor chamber. A source power antenna, capable of generating a processing plasma, confronts a portion of the at least one wall. A dry clean antenna is located adjacent the chamber beside a portion of the at least one wall not confronted by the source power antenna. During workpiece processing, the dry clean antenna preferably has essentially a floating potential. After workpiece processing has ceased, a dry clean plasma may be generated by inductive coupling using the dry clean antenna. Embodiments of the present invention allow dry clean plasma characteristics to be optimized to improve dry clean effectiveness. The source power antenna also may couple power to the dry clean plasma, preferably in parallel with the dry clean antenna. With such embodiments, the source power antenna may be operated so that it couples less power to the dry clean plasma, while the dry clean antenna couples more. This allows sputtering of the chamber wall under the source power antenna to be reduced and allows more effective removal of accumulated deposits.
摘要:
This invention is directed to a method for rapid plasma etching of materials which are difficult to etch at a high rate. The method is particularly useful in plasma etching silicon nitride layers more than five microns thick. The method includes the use of a plasma source gas that includes an etchant gas and a sputtering gas. Two separate power sources are used in the etching process and the power to each power source as well as the ratio between the flow rates of the etchant gas and sputtering gas can be advantageously adjusted to obtain etch rates of silicon nitride greater than two microns per minute. Additionally, an embodiment of the method of the invention provides a two etch step process which combines a high etch rate process with a low etch rate process to achieve high throughput while minimizing the likelihood of damage to underlying layers. The first etch step of the two-step method provides a high etch rate of about two microns per minute to remove substantially all of a layer to be etched. In the second step, a low etch rate process having an etch rate below about two microns per minute is used to remove any residual material not removed by the first etch step.
摘要:
Fabrics, such as employed in air filters, facemasks, garments, or PPE, are coated with pathogen-binding agents, such as chemicals that bind to protein-encapsulated airborne pathogens. Some of these pathogen-binding agents include multifunctional chemicals that bind to the fabrics and to exposed proteins and/or glycans on the pathogens. Some of these pathogen-binding agents include multifunctional silanes. Some of these pathogen-binding agents include multifunctional phosphanes or phosphonates.
摘要:
We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.