Abstract:
A touch sensor device comprises: a touch sensor 1 for sending out an output voltage signal S1 representing the presence or absence of an operation; an operation presence/absence determination unit 2 which, when the output voltage signal has a value equal to or more than a predetermined threshold value, determines that the operation has occurred; a stability determination unit 5 for detecting whether a differential signal S3 representing a differential value obtained by differentiating the output voltage signal is limited within a predetermined range or not; and a count-up timer 4 which, when a period during which the differential signal is limited within the predetermined range becomes a predetermined time period or longer on the premise that the output voltage signal has the value equal to or more than the predetermined threshold value, sends out an ON determination signal S5 and allows an external device 7 to operate.
Abstract:
The device is configured from: a reflective surface shape controllable mirror in which a band-shaped X-ray reflective surface 2 is formed on a central portion of a front surface of a substrate 1, reference planes 3 are formed along both sides of the X-ray reflective surface, and a plurality of piezoelectric elements 4 are attached to at least one of front and back surfaces of the substrate so as to be arranged in the longitudinal direction of the X-ray reflective surface on both side portions of the substrate, and a multichannel control system for applying a voltage to each of the piezoelectric elements.
Abstract:
The present invention is a method of cleaning a substrate, comprising cleaning at least one surface of a substrate located in a liquid by injecting pressurized cleaning liquid containing bubbles or cleaning particles from a injection nozzle to at least one surface of the substrate.
Abstract:
A polishing method and a polishing apparatus particularly suitable for finishing a surface of a substrate of a compound semiconductor containing an element such as Ga or the like to a desired level of flatness, so that a surface of a substrate of a compound semiconductor containing an element of Ga can be flattened with high surface accuracy within a practical processing time. In the presence of water (232) such as weak acid water, water with air dissolved therein, or electrolytic ion water, a surface of a substrate (142) made of a compound semiconductor containing either one of Ga, Al, and In and the surface of a polishing pad (242) having an electrically conductive member (264) in an area of the surface which is held in contact with the substrate (142) are relatively moved while being held in contact with each other, thereby polishing the surface of the substrate (142).
Abstract:
A catalyst-aided chemical processing method is a novel processing method having a high processing efficiency and suited for processing in a space wavelength range of not less than several tens of μm. The catalyst-aided chemical processing method comprises: immersing a workpiece in a processing solution in which a halogen-containing molecule is dissolved, said workpiece normally being insoluble in said processing solution; and bringing a platinum, gold or ceramic solid catalyst close to or into contact with a processing surface of the workpiece, thereby processing the workpiece through dissolution in the processing solution of a halogenide produced by chemical reaction between a halogen radical generated at the surface of the catalyst and a surface atom of the workpiece.
Abstract:
A catalyst-aided chemical processing method is a novel processing method having a high processing efficiency and suited for processing in a space wavelength range of not less than several tens of μm. The catalyst-aided chemical processing method comprises: immersing a workpiece in a processing solution in which a halogen-containing molecule is dissolved, said workpiece normally being insoluble in said processing solution; and bringing a platinum, gold or ceramic solid catalyst close to or into contact with a processing surface of the workpiece, thereby processing the workpiece through dissolution in the processing solution of a halogenide produced by chemical reaction between a halogen radical generated at the surface of the catalyst and a surface atom of the workpiece.
Abstract:
An X-ray condensing method and its device are provided with an X-ray mirror that has a wavefront adjustable function to finely adjust a wavefront of a reflecting X-ray, measure an X-ray intensity distribution in the vicinity of a focus, measure an X-ray intensity distribution in the vicinity of the X-ray mirror or use a known X-ray intensity distribution of an incident X-ray, calculate a complex amplitude distribution at the reflective surface by using a phase restoration method from the X-ray intensity distribution in the vicinity of the focus and the X-ray intensity distribution in the vicinity of the reflective surface, calculate a wavefront aberration of an X-ray condensing optical system from the complex amplitude distribution, and control the reflective surface of the X-ray mirror with the wavefront adjustable function so that the wavefront aberration is minimized.
Abstract:
To provide a method for measuring a plane mirror or a curved surface mirror close to plane mirror for condensing hard X-rays or soft X-rays used in a radiation light facility, especially an elliptical or tubular object having a steep profile exceeding 1×10−4 rad, ultra precisely with a precision on nano order or sub-nano order. Overall profile is measured by using overall profile data obtained from a Fizeau interferometer and stitching a plurality of micromeasurement data from a Michelson microinterferometer. A curved surface measured and a reference plane are measured simultaneously by the Fizeau interferometer, a plurality of pieces of partial profile data in a region narrower than the curved surface measured are acquired simultaneously by inclining the curved surface measured and the reference plane simultaneously and sequentially with respect to a reference plane, relative angle between the pieces of partial profile data is measured as the inclination angle of the reference plane, and adjoining pieces of partial profile data are stitched by utilizing coincidence between the inclination angle and an overlapped region thus obtaining overall profile data.
Abstract:
To provide a method for measuring a plane mirror or a curved surface mirror close to plane mirror for condensing hard X-rays or soft X-rays used in a radiation light facility, especially an elliptical or tubular object having a steep profile exceeding 1×10−4 rad, ultra precisely with a precision on nano order or sub-nano order. Overall profile is measured by using overall profile data obtained from a Fizeau interferometer and stitching a plurality of micromeasurement data from a Michelson microinterferometer. A curved surface measured and a reference plane are measured simultaneously by the Fizeau interferometer, a plurality of pieces of partial profile data in a region narrower than the curved surface measured are acquired simultaneously by inclining the curved surface measured and the reference plane simultaneously and sequentially with respect to a reference plane, relative angle between the pieces of partial profile data is measured as the inclination angle of the reference plane, and adjoining pieces of partial profile data are stitched by utilizing coincidence between the inclination angle and an overlapped region thus obtaining overall profile data.
Abstract:
A touch switch is composed of an EL light emitting layer configured by stacking a fluorescent layer and an insulation layer between first electrodes and a second electrode, a judgment means for making a judgment on touch manipulation with the first electrode by an operator and an EL driving unit for driving the EL light emitting layer for light emitting, with each of a plurality of first electrodes, each of plurality of fluorescent layers and each of plurality of insulation layers being provided as a set and the second electrode being provided as a single electrode with respect to the plurality of first electrodes, wherein the judgment means makes a judgment on which of the plurality of first electrodes has been touched by an operator on the basis of a high-frequency component inputted from the second electrode through the first electrode each time the touch switch is touched by an operator.