摘要:
The present disclosure provides many different embodiments of fabricating a FinFET device that provide one or more improvements over the prior art. In one embodiment, a method of fabricating a FinFET includes providing a semiconductor substrate and a plurality of dummy fins and active fins on the semiconductor substrate. A predetermined group of dummy fins is removed.
摘要:
The present disclosure provides many different embodiments of fabricating a FinFET device that provide one or more improvements over the prior art. In one embodiment, a method of fabricating a FinFET includes providing a semiconductor substrate and a plurality of dummy fins and active fins on the semiconductor substrate. A predetermined group of dummy fins is removed.
摘要:
A semiconductor structure having a hybrid crystal orientation is provided. The semiconductor structure includes an insulator layer, e.g., a buried oxide (BOX), on a first semiconductor layer, and a second semiconductor layer on the buried oxide, wherein the first and second semiconductor layers have a first and a second crystal orientation, respectively. A first region of the second semiconductor layer is replaced with an epitaxially grown layer of the first semiconductor layer, thereby providing a substrate having a first region with a first crystal orientation and a second region with a second crystal orientation. An isolation structure is formed to isolate the first and second regions. Thereafter, NMOS and PMOS transistors may be formed on the substrate in the region having the crystal orientation that is the most appropriate.
摘要:
A semiconductor device and method for forming the same including improved electrostatic discharge protection for advanced semiconductor devices, the semiconductor device including providing semiconductor substrate having a pre-selected surface orientation and crystal direction; an insulator layer overlying the semiconductor substrate; a first semiconductor active region overlying the insulator layer having a first surface orientation selected from the group consisting of and ; a second semiconductor active region extending through a thickness portion of the insulator layer having a second surface orientation selected from the group consisting of and different from the first surface orientation; wherein MOS devices including a first MOS device of a first conduction type is disposed on the first semiconductor active region and a second MOS device of a second conduction type is disposed on the second semiconductor active region.
摘要:
Disclosed herein are various embodiments of techniques for preventing silicide stringer or encroachment formation during metal salicide formation in semiconductor devices. The disclosed technique involves depositing a protective layer, such as a nitride or other dielectric layer, over areas of the semiconductor device where metal silicide formation is not desired because such formation detrimentally affects device performance. For example, silicon particles that may remain in device features that are formed through silicon oxidation, such as under the gate sidewall spacers and proximate to the perimeter of shallow trench isolation structures, are protected from reacting with metal deposited to form metal silicide in certain areas of the device. As a result, silicide stringers or encroachment in undesired areas is reduced or eliminated by the protective layer.
摘要:
An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
摘要:
Methods of reducing a short channel phenomena for an NMOS device formed in an SOI layer, wherein the short channel phenomena is created by boron movement from a channel region to adjacent insulator regions, has been developed. A first embodiment of this invention entails the formation of a boron or nitrogen doped insulator layer located underlying the NMOS device. This is accomplished via formation of shallow trench openings in composite silicon nitride-silicon shapes, followed by lateral pull back of the silicon nitride shapes exposing portions of the top surface of the silicon shapes, followed by implantation of boron or nitrogen ions into portions of the insulator layer exposed in the STI openings and into portions of the insulator layer underlying exposed portions of the silicon shapes. A subsequent hydrogen anneal procedure finalizes the doped insulator layer which alleviates boron segregation from an overlying NMOS channel region. A second embodiment features the formation of a dielectric barrier layer on the surfaces of STI openings preventing boron from segregated to silicon oxide filled STI regions. A combination of both embodiments can be employed to reduce and prevent boron segregation to both underlying and adjacent insulator regions, thus reducing the risk of short channel phenomena.
摘要:
A method for manufacturing a metal gate includes providing a substrate including a gate electrode located on the substrate. A plurality of layers is formed, including a first layer located on the substrate and the gate electrode and a second layer adjacent the first layer. The layers are etched to form a plurality of adjacent spacers, including a first spacer located on the substrate and adjacent the gate electrode and a second spacer adjacent the first spacer. The first spacer is then etched and a metal layer is formed on the device immediately adjacent to the gate electrode. The metal layer is then reacted with the gate electrode to form a metal gate.
摘要:
A method for forming a field effect transistor includes: forming a conductive region on an isolation layer formed on a substrate, and a cap dielectric layer on the conductive region; forming a sacrificial dielectric layer over the isolation layer and the cap dielectric layer, and on sidewalls of the conductive region; removing a portion of the sacrificial dielectric layer on the cap dielectric layer; removing the cap dielectric layer; removing remaining portions of the sacrificial dielectric layer; forming a gate on the conductive region; and forming source/drain (S/D) regions within the conductive region and adjacent to the gate. A field effect transistor includes a conductive region over an isolation layer formed on a substrate, the conductive region being substantially without undercut at the region within the isolation layer beneath the conductive region; a gate on the conductive region; and S/D regions within the conductive region and adjacent to the gate.
摘要:
Disclosed herein are various embodiments of techniques for preventing silicide stringer or encroachment formation during metal salicide formation in semiconductor devices. The disclosed technique involves depositing a protective layer, such as a nitride or other dielectric layer, over areas of the semiconductor device where metal silicide formation is not desired because such formation detrimentally affects device performance. For example, silicon particles that may remain in device features that are formed through silicon oxidation, such as under the gate sidewall spacers and proximate to the perimeter of shallow trench isolation structures, are protected from reacting with metal deposited to form metal silicide in certain areas of the device. As a result, silicide stringers or encroachment in undesired areas is reduced or eliminated by the protective layer.