Abstract:
The feature of the present invention consists in: a processor main circuit for executing program instruction strings on a processor chip; a substrate bias switching unit for switching voltages of substrate biases applied to a substrate of the processor main circuit; and an operation mode control unit for controlling, in response to the execution of an instruction to proceed to a stand-by mode in the processor main circuit, the substrate bias switching unit in such a way that the biases are switched over to voltages for the stand-by mode, and for controlling, in response to an interruption of the stand-by release from the outside, the substrate bias switching unit in such a way that the biases are switched over to voltages for a normal mode, and also for releasing, after the bias voltages switched thereto have been stabilized, the stand-by of the processor main circuit to restart the operation.
Abstract:
A main storage apparatus is a synchronous dynamic memory having a plurality of memory banks and a mode register for determining an operation mode, a main storage controller is coupled to a processor and the main storage apparatus, and means to realize controlling of parallel access to a plurality of banks of the memory and controlling of setting of an operation mode to the built-in register is arranged in the main storage controller. Accordingly, the use of a conventional processor of high generality and a conventional memory can be ensured.
Abstract:
A semiconductor integrated circuit device is composed of logic gates each provided with MOS transistors. The semiconductor integrated circuit device includes a current control device. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors, that have both an operation mode and a low power back-up or sleep mode used for power reduction.
Abstract:
An FPU pipeline is synchronized with a CPU pipeline. Synchronization is achieved by having stalls and freezes in any one pipeline cause stalls and freezes in the other pipeline as well. Exceptions are kept precise even for long floating point operations. Precise exceptions are achieved by having a first execution stage of the FPU pipeline generate a busy signal, when a first floating point instruction enters a first execution stage of the FPU pipeline. When a second floating point instruction is decoded by the FPU pipeline before the first floating point instruction has finished executing in the first stage of the FPU pipeline, then both pipelines are stalled.
Abstract:
An operational margin of a memory of a semiconductor integrated circuit device including an SRAM is improved. In order to set the Vth of driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance QL forming memory cells of an SRAM, relatively and intentionally higher than the Vth of predetermined MISFETs of SRAM peripheral circuits and logic circuits such as microprocessor, an impurity introduction step is introduced to set the Vth of the driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance, separately from an impurity introduction step for setting the Vth of the predetermined MISFETs.
Abstract:
A data processor in which a speed of an address translating operation is raised is disclosed. A translation lookaside buffer is divided into a buffer for data and a buffer for instruction, address translation information for instruction is also stored into a translation lookaside buffer for data, and when a translation miss occurs in a translation lookaside buffer for instruction, new address translation information is fetched from the translation lookaside buffer for data. A high speed of the address translating operation can be realized as compared with that in case of obtaining address translation information from an external address translation table each time a translation miss occurs in the translation lookaside buffer for instruction.
Abstract:
An operational margin of a memory of a semiconductor integrated circuit device including an SRAM is improved. In order to set the Vth of driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance QL forming memory cells of an SRAM, relatively and intentionally higher than the Vth of predetermined MISFETs of SRAM peripheral circuits and logic circuits, such as a microprocessor, an impurity introduction step is introduced to set the Vth of the driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance, separately from an impurity introduction step for setting the Vth of the predetermined MISFETs.
Abstract:
A logic test having less over-head for testing a logic circuit in a chip is implemented by constituting a test circuit in the chip without introducing a novel device process of FPGA. A memory of a self-configuration type is provided in the chip and a test circuit is constituted in the memory of a self-configuration type or an ordinary memory through a tester HDL, thereby testing other memories and logic circuits in the chip. The test circuit is reconstituted such that the memory used in the structure of the test circuit can be operated as an ordinary memory.
Abstract:
A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.
Abstract:
A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.