摘要:
Focused acoustic radiation, referred to as tonebursts, are applied to a volume of liquid to generate a set of droplets. In one embodiment, a first toneburst is applied to temporarily raise a mound or protuberance on a free surface of the fluid. After the mound has reached a certain state, at least two additional toneburst can be applied to the protuberance to sequentially eject multiple bursts of multiple droplets. In one embodiment, the state of the mound can be maintained by a sustained acoustic signal, during which time multiple additional tonebursts can be applied to sequentially eject multiple bursts of multiple droplets from the mound.
摘要:
Focused acoustic radiation, referred to as tonebursts, are applied to a volume of liquid to generate a set of droplets. The droplets generated are substantially smaller in scale than the focal spot size of the acoustic beam (e.g., the frequency at which the acoustic transducer operates). Further, the droplets have trajectories that are substantially in the direction of the acoustic beam propagation direction. In one embodiment, a first toneburst is applied to temporarily raise a protuberance on a free surface of the fluid. After the protuberance has reached a certain state, a second toneburst is applied to the protuberance to break it into very small droplets. In one embodiment, the state of the protuberance at which the second toneburst is supplied is the time period shortly after the protuberance reaches its maximum height but before the protuberance recedes back into the volume of fluid.
摘要:
Methods of ejecting droplets containing a non-Newtonian fluid by an acoustic droplet ejector can include applying a tone burst of focused acoustic energy to a fluid reservoir containing a non-Newtonian fluid at sufficient amplitude to effect droplet ejection according to a tone burst pattern. The tone burst pattern may include three discrete tone burst segments, the first tone burst segment having greater duration than the second and third segments, and third segment having greater duration than the second segment. The exact durations and amplitudes of the tone burst segments can be tuned to influence the ejection properties.
摘要:
A method is provided for achieving transfection of host cells using sonoporation. An acoustic radiation generator is positioned in acoustic coupling relationship with respect to a reservoir containing host cells to be transfected, exogenous material to be incorporated into the host cells, and a cell-compatible fluid medium. The acoustic radiation generator is activated to generate acoustic radiation and direct the acoustic radiation into the reservoir in a manner effective to enable transfection of the host cells with the exogenous material.
摘要:
The invention relates to methods and devices that use focused radiation to handle and/or monitor pathogenic fluids. In particular, a method is provided for dispensing one or more droplets of a fluid containing a pathogen. The method involves providing the pathogen-containing fluid in a reservoir and applying focused radiation to the pathogen-containing fluid in the reservoir in a manner effective to eject a droplet of the fluid therefrom. Often, a pathogen-impermeable enclosure is used.
摘要:
The invention provides apparatuses and methods for acoustically ejecting the fluid from a reservoir contained in or disposed on a substrate. The reservoir has a portion adapted to contain a fluid, and an acoustic radiation generator is positioned in acoustic coupling relationship to the reservoir. Acoustic radiation generated by the acoustic radiation generator is transmitted through at least the portion of the reservoir to an analyzer. The analyzer is capable of determining the energy level of the transmitted acoustic radiation and raising the energy level of subsequent pulses to a level sufficient to eject fluid droplets from the reservoir. The invention is particularly suited for delivering fluid from a plurality of reservoirs in an accurate and efficient manner.
摘要:
A method and system are provided for detecting the concentration of an analyte in a fluid sample. The method and system involve analysis of a volatilized, ionized fluid sample using a mass spectrometer or other ionic analyte detection device that provides a signal proportional in intensity to the quantity of ionized analyte detected. The improvement involves replacement of a necessary non-analyte component in the fluid sample with a substitute component that serves the same purpose as the original component but is either more volatile than the original component and/or the analyte or undergoes a reaction to provide lower molecular weight reaction products, and results in an increased intensity in signal and signal-to-noise ratio. Acoustic fluid ejection is a preferred method of generating nanoliter-sized droplets of fluid sample that are then volatilized, ionized, and analyzed. Also provided are zwitterionic compounds suitable as the substitute components that when ionized and heated decompose to provide carbonic dioxide, a nitrogenous species such as ammonia, an amine, or nitrogen gas, and a volatile aromatic compound.
摘要:
The invention provides apparatuses and methods for acoustically ejecting the fluid from a reservoir contained in or disposed on a substrate. The reservoir has a portion adapted to contain a fluid, and an acoustic radiation generator is positioned in acoustic coupling relationship to the reservoir. Acoustic radiation generated by the acoustic radiation generator is transmitted through at least the portion of the reservoir to an analyzer. The analyzer is capable of determining the energy level of the transmitted acoustic radiation and raising the energy level of subsequent pulses to a level sufficient to eject fluid droplets from the reservoir. The invention is particularly suited for delivering fluid from a plurality of reservoirs in an accurate and efficient manner.