摘要:
A method for regulating the structure and properties of the composite nanoabsorbent is provided. This method uses nanoporous chloromethylated polystyrene-divinylbenzene beads as the support material and adopts in situ precipitation method to load dissociative functional nanoparticles thereon; the composite nanoabsorbent of different absorption capacity and absorption speed can be prepared through regulating the pore structure, which is realized herein by means of starting crosslinking reactions through heating chloromethylated beads under existence of the swelling agent and the catalyst; through changing the proportions of different components in the reaction system, modes of heating and time of reaction, the polymer support with different pore structures can be prepared. This invention can successfully regulate the distribution and size of inorganic nanoparticles; the composite nanomaterials prepared by the resin of different degrees of crosslinking present different structures and properties, and the specific structure and properties can be selected in order to meet practical requirements.
摘要:
A method for regulating the distribution of metallic nanoparticles within the resin support is provided. This method uses the ion exchange or absorption resin bearing basic functional groups as the support; firstly introducing the metal in the form of anionic complexes onto the resin support through the ion exchange process, then realizing the purpose of regulating the distribution of the metal and its compound within the resin support by means of changing the concentration of the reductive or deposition agent in water solution and the reaction time. The regulated distribution of metallic nanoparticles within the resin support is in the form of rings with different depths and densities. The different distribution patterns result in improvements upon properties of the inorganic-organic composite material, such as reaction activity, reaction selectivity and metallic stability, and has significant referential value for preparation and structural regulation of other inorganic-organic composite materials of the same kind.
摘要:
A deep purification method for removing trace thallium in water by using polymer-based nanosized manganese oxide is disclosed. This method comprising the following steps: adjusting the pH value of the water polluted with trace thallium to 5-8.5 and filtering it, then channeling the water so treated through a packed tower of filtering bed packed with polymer-based nanosized manganese oxide so that the thallium in water can be selectively adsorbed upon the nanocomposite material, stopping the adsorption process when the thallium in water reaches the leak point, and then using mixed solution of HCl—Ca(NO3)2 or NaOH—NaClO as the desorption agent and starting desorption and regeneration process for the packing material of polymer-based nanosized manganese oxide. This effectively reduces the concentration of thallium in water from 0.01-0.5 mg/L to lower than 0.1 μg/L, despite the much higher concentration of coexisting competitive cations such as Ca2+, Mg2+, Na+ and Si(IV).
摘要:
A method for regulating the structure and properties of the composite nanoabsorbent is provided. This method uses nanoporous chloromethylated polystyrene-divinylbenzene beads as the support material and adopts in situ precipitation method to load dissociative functional nanoparticles thereon; the composite nanoabsorbent of different absorption capacity and absorption speed can be prepared through regulating the pore structure, which is realized herein by means of starting crosslinking reactions through heating chloromethylated beads under existence of the swelling agent and the catalyst; through changing the proportions of different components in the reaction system, modes of heating and time of reaction, the polymer support with different pore structures can be prepared. This invention can successfully regulate the distribution and size of inorganic nanoparticles; the composite nanomaterials prepared by the resin of different degrees of crosslinking present different structures and properties, and the specific structure and properties can be selected in order to meet practical requirements.
摘要:
A highly active supported bimetallic nanocatalyst and its preparation method is disclosed. During the preparation, using an ion exchange or adsorption resin bearing basic functional groups as the support of the said catalyst, successively introducing the first metal precursor FeCl4− and the second metal precursor (PdCl42−, NiCl42− or CuCl42−) onto the resin through ion exchange process; then under the protection of nitrogen gas, simultaneously reducing the two metals with either NaBH4 or KBH4; washing the resulting material with deoxygenated water and drying it, and the said catalyst is therefore obtained. The supported bimetallic material is characteristic of independent distribution of the two metals within the support. The independently distributed structure of the two metals enhances the catalytic efficiency of the second metal and the catalytic stability.
摘要:
A highly active supported bimetallic nanocatalyst and its preparation method is disclosed. During the preparation, using an ion exchange or absorption resin bearing basic functional groups as the support of the said catalyst, successively introducing the first metal precursor FeCl4− and the second metal precursor (PdCl42−, NiCl42− or CuCl42−) onto the resin through ion exchange process; then under the protection of nitrogen gas, simultaneously reducing the two metals with either NaBH4 or KBH4; washing the material with deoxygenated water and drying it, and the said catalyst is therefore obtained. The supported bimetallic material is characteristic of independent distribution of the two metals within the support. The independently distributed structure of the two metals enhances the catalytic efficiency of the second metal and the catalytic stability.
摘要:
A method for regulating the distribution of metallic nanoparticles within the resin support is provided. This method uses the ion exchange or absorption resin bearing basic functional groups as the support; firstly introducing the metal in the form of anionic complexes onto the resin support through the ion exchange process, then realizing the purpose of regulating the distribution of the metal and its compound within the resin support by means of changing the concentration of the reductive or deposition agent in water solution and the reaction time. The regulated distribution of metallic nanoparticles within the resin support is in the form of rings with different depths and densities. The different distribution patterns result in improvements upon properties of the inorganic-organic composite material, such as reaction activity, reaction selectivity and metallic stability, and has significant referential value for preparation and structural regulation of other inorganic-organic composite materials of the same kind.