Abstract:
A catalyst composition comprising a monoester, the compound represented by formula (I) as an internal electron donor, and optionally an additional internal electron donor selected from a group consisting of diesters and diethers, wherein: R1, R2, R3, R4, R5 and R6 are hydrogen, straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, R7 is a straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, and R8 is an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also described is a process for preparing the polymerization catalyst composition, a polymerization catalyst system comprising the catalyst composition, a co-catalyst and optionally an external electron donor; and use of the catalyst system for polymerization of olefins.
Abstract:
The present invention relates to a procatalyst comprising the compound represented by Formula (A), preferably the Fischer projection of formula (A) as an internal electron donor. The invention also relates to a process for preparing said procatalyst. Furthermore, the invention is directed to a catalyst system for polymerization of olefins comprising the said procatalyst, a co-catalyst and optionally an external electron donor; a process of making polyolefins by contacting at least one olefin with said catalyst system and to polyolefins obtainable by said process. The invention also relates to the use of said procatalyst in the polymerization of olefins. Moreover, the present invention relates to polymers obtained by polymerization using said procatalyst and to the shaped articles of said polymers.
Abstract:
The present invention relates to a process for preparing a catalyst component for polymerization of an olefin comprising the steps of: i) contacting a compound R9zMgXz2-z wherein R9 is aromatic, aliphatic or cyclo-aliphatic group containing up to 20 carbon atoms, X is a halide, and z is in a range of larger than 0 and smaller than 2, with an alkoxy- or aryloky-containing silane compound pound to given first intermediate reaction product; ii) contacting the first intermediate reaction product with at least one activating compound selected from the group formed by electron donors and compounds of formula M(OR10)v-w(OR11)w, wherein M can be Ti, Zr, HI, Al or Si, and M(OR10)v-w(R11)w, wherein M is Si, each R10 and R11, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M, v being either 3 or 4, and w is smaller than v, to give a second intermediate reaction product; and iii) contacting the second intermediate reaction product with a halogen-containing Ti-compound, a monoester as activating agent, a 1,3-diether as an internal electron donor, and optionally a diester as an additional internal electron donor.
Abstract:
The present invention relates to a process for preparing a catalyst component for polymerization of an olefin comprising the steps of: i) contacting a compound R9zMgX2-z wherein R9 is aromatic, aliphatic or cyclo-aliphatic group containing up to 20 carbon atoms, X is a halide, and z is in a range of larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to given a first intermediate reaction product; ii) contacting the first intermediate reaction product with at least one activating compound selected from the group formed by electron donors and compounds of formula M(OR10)v-w(OR11)w, wherein M can be Ti, Zr, Hf, Al or Si, and M(OR10)v-w(R11)w, wherein M is Si, each R10 and R11, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M, v being either 3 or 4, and w is smaller than v, to give a second intermediate reaction product; and iii) contacting the second intermediate reaction product with a halogen-containing Ti-compound, a monoester as activating agent, a 1,3-diether as an internal electron donor, and optionally a diester as an additional internal electron donor.
Abstract:
The invention relates to a process for the preparation of polypropylene having —a molecular weight (Mw) of 450,000-950,000, —a molecular weight distribution of 3-6, —a melt flow in the range of 7-14 dg/min measured with a load of 21.6 kg at 230° C. or 0.05-2 dg/min measured with a load of 2.16 kg at 230° C. and —a xylene soluble content of 2-6 wt % by converting propylene into the polypropylene without pre-polymerization in the presence of a polymerization catalyst under a condition where the volume ratio of H2 to propylene is at most 0.0020, wherein the catalyst comprises a catalyst component, a co-catalyst and an external donor, wherein the catalyst component is obtained by a process wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2-x and each Alk, independently, represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor, and wherein the molar ratio of the co-catalyst to the external donor is 3.3-5.2, preferably 3.8-4.4.
Abstract:
The invention relates to a process for preparing a polymerization catalyst component wherein a solid compound with formula Mg(OR1)xCl2-x wherein x is larger than 0 and smaller than 2, and each R1, independently, represents an alkyl group, said compound being obtained by reacting a Grignard compound with an alkoxy- or aryloxy-containing silane compound, is contacted with at least one activating compound selected from the group formed by internal electron donors and compounds of formula M(OR2)v-w(R3)w, wherein M can be Ti, Zr, Hf, Al or Si, each R2 and R3, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M and w is smaller than v, in the presence of an inert dispersant to give an intermediate reaction product, and wherein the intermediate reaction product is contacted with a halogen-containing Ti-compound. A catalyst system comprising said component shows improved performance in olefin polymerization.The invention also relates to a polymerization catalyst system comprising the catalyst component and to a process of making a polyolefin by contacting at least one olefin with a polymerization catalyst system comprising the catalyst component.
Abstract:
The invention relates to a process for preparing a polymerization catalyst component wherein a solid compound with formula Mg(OR1)xCl2-x wherein x is larger than 0 and smaller than 2, and each R1, independently, represents an alkyl group, said compound being obtained by reacting a Grignard compound with an alkoxy- or aryloxy-containing silane compound, is contacted with at least one activating compound selected from the group formed by internal electron donors and compounds of formula M(OR2)v-w(R3)w, wherein M can be Ti, Zr, Hf, Al or Si, each R2 and R3, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M and w is smaller than v, in the presence of an inert dispersant to give an intermediate reaction product, and wherein the intermediate reaction product is contacted with a halogen-containing Ti-compound. A catalyst system comprising said component shows improved performance in olefin polymerization.The invention also relates to a polymerization catalyst system comprising the catalyst component and to a process of making a polyolefin by contacting at least one olefin with a polymerization catalyst system comprising the catalyst component.
Abstract:
The invention relates to a process for the preparation of polypropylene having —a molecular weight (Mw) of 450,000-950,000, —a molecular weight distribution of 3-6, —a melt flow in the range of 7-14 dg/min measured with a load of 21.6 kg at 230° C. or 0.05-2 dg/min measured with a load of 2.16 kg at 230° C. and —a xylene soluble content of 2-6 wt % by converting propylene into the polypropylene without pre-polymerization in the presence of a polymerization catalyst under a condition where the volume ratio of H2 to propylene is at most 0.0020, wherein the catalyst comprises a catalyst component, a co-catalyst and an external donor, wherein the catalyst component is obtained by a process wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2−x and each Alk, independently, represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor, and wherein the molar ratio of the co-catalyst to the external donor is 3.3-5.2, preferably 3.8-4.4.
Abstract:
The present invention relates to a procatalyst comprising the compound represented by Formula (A), preferably the Fischer projection of formula (A) as an internal electron donor. The invention also relates to a process for preparing said procatalyst. Furthermore, the invention is directed to a catalyst system for polymerization of olefins comprising the said procatalyst, a co-catalyst and optionally an external electron donor; a process of making polyolefins by contacting at least one olefin with said catalyst system and to polyolefins obtainable by said process. The invention also relates to the use of said procatalyst in the polymerization of olefins. Moreover, the present invention relates to polymers obtained by polymerization using said procatalyst and to the shaped articles of said polymers.
Abstract:
A catalyst composition including the compound of Formula I as an internal electron donor, wherein: R1, R2, R3, R4, R5 and R6 are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also disclosed is a process for preparing said polymerization catalyst composition; a polymerization catalyst system comprising said catalyst composition, a co-catalyst and optionally an external electron donor; a polyolefin obtainable by the process; and use of the compound of Formula I as in internal electron donor in catalysts for polymerization of olefins.