Abstract:
Certain embodiments provide an exhaust gas treatment device, comprising a scrubber unit having a vessel and a sprayer spraying water into the vessel, a first pipe through which a first gas discharged from an external apparatus and containing a non-water-soluble organic solvent is supplied to the vessel, and a second pipe through which a second gas containing a water-soluble organic solvent is supplied to the vessel through the first pipe or directly. In the vessel, the water-soluble organic solvent and the non-water-soluble organic solvent are adsorbed and removed from a mixed gas composed of the first gas and the second gas by the water sprayed from the sprayer. The mixed gas is discharged from the vessel through a third pipe.
Abstract:
A method of manufacturing a semiconductor device includes removing a part of a semiconductor substrate to form a protruding portion and a recess portion in a surface area of the semiconductor substrate, forming a first epitaxial semiconductor layer in the recess portion, forming a second epitaxial semiconductor layer on the protruding portion and the first epitaxial semiconductor layer, removing a first part of the second epitaxial semiconductor layer with a second part of the second epitaxial semiconductor layer left to expose a part of the first epitaxial semiconductor layer, and etching the first epitaxial semiconductor layer from the exposed part of the first epitaxial semiconductor layer to form a cavity under the second part of the second epitaxial semiconductor layer.
Abstract:
A cleaning method for a semiconductor wafer with cleaning liquid comprising: cleaning the semiconductor wafer while the temperature of the surface of the semiconductor wafer is from 30 degrees to 50 degrees, the cleaning liquid has lower surface tension and viscosity than water.
Abstract:
A cleaning apparatus for a semiconductor wafer includes: a gas jet device including a gas nozzle which jets a first gas onto the surface of a semiconductor wafer to thin the thickness of a stagnant layer on the surface of the semiconductor wafer; and a two-fluid jet device including a two-fluid nozzle which jets droplet mist onto a region where thickness of the stagnant layer of the semiconductor wafer is thinned, the droplet mist being mixed two-fluid of a liquid and a second gas.
Abstract:
A substrate processing method that processes a substrate on which a plurality of patterns adjacent to each other are formed, has: supplying a first processing liquid to a principal surface of the substrate that is dry and has the patterns formed thereon to make the first processing liquid adhere to the principal surface of the substrate; and supplying a second processing liquid having a higher surface tension than the first processing liquid to the principal surface of the substrate in the state where the first processing liquid adheres to the principal surface of the substrate to process the principal surface of the substrate with the second processing liquid.
Abstract:
A method has been disclosed which cleans a semiconductor substrate using a cleaning liquid produced by mixing bubbles of a gas into an acid solution in which the gas has been dissolved to the saturated concentration and which brings the zeta potentials of the semiconductor substrate and adsorbed particles into the negative region by the introduction of an interfacial active agent. Alternatively, a semiconductor substrate is cleaned using a cleaning liquid produced by mixing bubbles of a gas into an alkaline solution in which the gas has been dissolved to the saturated concentration and whose pH is 9 or more.
Abstract:
A cleaning apparatus for a semiconductor wafer includes: a gas jet device including a gas nozzle which jets a first gas onto the surface of a semiconductor wafer to thin the thickness of a stagnant layer on the surface of the semiconductor wafer; and a two-fluid jet device including a two-fluid nozzle which jets droplet mist onto a region where thickness of the stagnant layer of the semiconductor wafer is thinned, the droplet mist being mixed two-fluid of a liquid and a second gas.
Abstract:
A method has been disclosed which cleans a semiconductor substrate using a cleaning liquid produced by mixing bubbles of a gas into an acid solution in which the gas has been dissolved to the saturated concentration and which brings the zeta potentials of the semiconductor substrate and adsorbed particles into the negative region by the introduction of an interfacial active agent. Alternatively, a semiconductor substrate is cleaned using a cleaning liquid produced by mixing bubbles of a gas into an alkaline solution in which the gas has been dissolved to the saturated concentration and whose pH is 9 or more.
Abstract:
A template cleaning method for cleaning a template for nanoimprint, according to an embodiment of the present invention includes placing a wafer on a stage provided in a chamber, cleaning the wafer placed on the stage, inspecting the wafer for particles after the cleaning of the wafer, placing the template on the stage after the inspection of the wafer, and cleaning the template placed on the stage.
Abstract:
A method of manufacturing a semiconductor device includes removing a part of a semiconductor substrate to form a protruding portion and a recess portion in a surface area of the semiconductor substrate, forming a first epitaxial semiconductor layer in the recess portion, forming a second epitaxial semiconductor layer on the protruding portion and the first epitaxial semiconductor layer, removing a first part of the second epitaxial semiconductor layer with a second part of the second epitaxial semiconductor layer left to expose a part of the first epitaxial semiconductor layer, and etching the first epitaxial semiconductor layer from the exposed part of the first epitaxial semiconductor layer to form a cavity under the second part of the second epitaxial semiconductor layer.