Abstract:
Generation of dislocation and increase of diffusion resistance at edge portions of source/drain regions in a CMIS are prevented. When source/drain regions in a CMIS are formed, argon is implanted to a P-well layer as a dislocation-suppressing element and nitrogen is implanted to an N-well layer as a dislocation-suppressing element before an ion implantation of impurities to a silicon substrate. In this manner, by separately implanting dislocation-suppressing elements suitable for each of the P-well layer and the N-well layer as well as suppressing the generation of dislocation, increase of diffusion resistance can be suppressed, yield can be improved, and the reliability of devices can be increased.
Abstract:
A process of producing a semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step. The device is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
Abstract:
A process of producing a semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step. The device is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
Abstract:
A semiconductor device having a high degree of reliability is provided. A second object of the invention is to provide a semiconductor device of high yield. The semiconductor includes a silicon substrate, a gate dielectric film formed on one main surface of the silicon substrate, a gate electrode formed by being stacked on the gate dielectric film and a diffusion layer containing arsenic and phosphorus. Both of the concentration of the highest concentration portion of arsenic and the concentration of the highest concentration portion of phosphorus are each at 1026 atoms/m3 or more and 1027 atoms/m3 or less, and the depth of the highest concentration portion of phosphorus from the surface of the silicon substrate is less than the depth of the highest concentration portion of arsenic.
Abstract translation:提供了具有高可靠性的半导体器件。 本发明的第二个目的是提供一种高产率的半导体器件。 半导体包括硅衬底,形成在硅衬底的一个主表面上的栅极电介质膜,通过层叠在栅极电介质膜上形成的栅电极和含有砷和磷的扩散层。 砷的最高浓度部分的浓度和磷的最高浓度部分的浓度分别为10 26个/ m 3以上且10 27个/ m 3以下, 并且来自硅衬底的表面的磷的最高浓度部分的深度小于砷的最高浓度部分的深度。
Abstract:
A thermal air flow sensor that produces less measurement error is provided. The thermal air flow sensor includes: a semiconductor substrate; a heating resistor, resistance temperature detectors, and an electrical insulator that includes a silicon oxide film, wherein the heating resistor, the resistance temperature detectors, and the electrical insulator are formed on the semiconductor substrate; and a diaphragm portion formed by removing a portion of the semiconductor substrate. The heating resistor and the resistance temperature detectors are formed on the diaphragm portion. The thermal air flow sensor further includes a silicon nitride film formed as the electrical insulator above the heating resistor and the resistance temperature detectors. The silicon nitride film has steps conforming to the patterns of the heating resistor and the resistance temperature detectors. The silicon nitride film has a multilayer structure.
Abstract:
An object of the present invention is to provide a thermal airflow sensor that prevents moisture absorption by a silicon oxide film formed closest to a surface (formed to be located on an uppermost portion), and that reduces a measuring error. In order to attain the foregoing object, the thermal airflow sensor according to the present invention applies an ion implantation to a silicon oxide film 4, formed closest to a surface (formed to be located on an uppermost portion), by using an atom or molecule selected from at least any one of silicon, oxygen, and an inert element such as argon or nitrogen, in order to increase a concentration of an atom contained in the silicon oxide film 4 more than that before the ion implantation.
Abstract:
After a gate electrode is formed on a main surface of a semiconductor substrate, low concentration layers are formed on the main surface of the semiconductor substrate by implanting impurities therein, with using the gate electrode as a mask. Thereafter, first sidewalls and second sidewalls are formed on the both side surfaces of the gate electrode. Subsequently, nitrogen or the like is ion-implanted into the semiconductor substrate, with using the first sidewalls, the second sidewalls and the gate electrode as a mask, thereby forming a crystallization-control region (CCR) on the main surface of the semiconductor substrate. Then, after the second sidewalls are removed, high concentration layers for a source and a drain are formed on the main surface of the semiconductor substrate.
Abstract:
A semiconductor integrated circuit device and a method of manufacturing the same. The surface of a substrate of an active region surrounded by an element isolation trench is horizontally flat in the center portion of the active region but falls toward the side wall of the element isolation trench in the shoulder portion of the active region. This inclined surface contains two inclined surfaces having different inclination angles. The first inclined surface near the center portion of the active region is relatively steep and the second inclined surface near the side wall of the element isolation trench is gentler than the first inclined surface. The surface of the substrate in the shoulder portion of the active region is wholly rounded and has no angular portion.
Abstract:
To suppress occurrence of defects in a semiconductor substrate, a semiconductor device is constituted by having: the semiconductor substrate; an element isolating region having a trench formed in the semiconductor substrate and an embedding insulating film which is embedded into the trench; an active region formed adjacent to the element isolating region, in which a gate insulating film is formed and a gate electrode is formed on the gate insulating film; and a region formed in such a manner that at least a portion of the gate electrode is positioned on the element isolating region, and a first edge surface of an upper side of the embedding insulating film in a first element isolating region where the gate electrode is positioned is located above a second edge surface of the embedding insulating film in a second element isolating region where the gate electrode film is not positioned.