Abstract:
Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
Abstract:
Disclosed is a transmitter optical module which includes an electro-absorption modulated laser modulating a light into an optical signal through a high-frequency electrical signal; a first sub-mount transferring the high-frequency signal to the electro-absorption modulated laser; and a second sub-mount receiving the high-frequency signal from the electro-absorption modulated laser to terminate the electro-absorption modulated laser. A length of a first wire connecting the first sub-mount and the electro-absorption modulated laser is different from a length of a second wire connecting the second sub-mount and the electro-absorption modulated laser.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
Abstract:
Provided is a frequency-tunable terahertz light source device. The frequency-tunable terahertz light source device satisfies a Littrow diffraction condition at a wavelength and simultaneously satisfies a Littman-Metcalf diffraction condition at another wavelength using a double diffraction grating having two grating periods. Thus, oscillations simultaneously occur at the two different wavelengths, such that a terahertz wave can be stably generated by beating of the two oscillation wavelengths. In addition, the frequency-tunable terahertz light source device can readily change a frequency up to several terahertz and can be fabricated in a small size.
Abstract:
A wavelength selective switch is provided. The wavelength selective switch according to the present invention comprises: an optical demultiplexer for separating an incident light with a plurality of wavelengths multiplexed into a plurality of wavelength lights and outputting the separated wavelength lights; an optical amplifier for selectively amplifying or absorbing the separated wavelength lights; an optical deflector for selectively deflecting outputs of the optical amplifier; and an optical multiplexer for multiplexing the selectively deflected lights and outputting the multiplexed lights.
Abstract:
Provided is a long cavity single-mode laser diode in which a ring waveguide is integrated such as a conventional array waveguide (AWG)-based laser or a concave grating (CG)-based laser.
Abstract:
Provided are a tunable demultiplexer and a tunable laser, having an optical deflector in which a refractive index of a core layer of a deflection pattern region having a predetermined shape varies in response to an external electrical signal so that the optical deflector deflects incident light in the radial direction.
Abstract:
An optical modulator using a dynamic single mode laser diode (DSM-LD) integrated with a deflector is disclosed. The optical modulator for coupling a light beam to an optical fiber, the optical modulator includes: a laser diode for generating the light beam; and a deflector for deflecting a direction of the light beam according to an electric signal externally applied and outputting the defected light beam to the optical fiber, wherein the laser diode and the deflector are integrated with a multi-layer semiconductor structure in such a way that the light beam is modulated by changing a defection angle of the deflector.
Abstract:
An optical modulator using a dynamic single mode laser diode (DSM-LD) integrated with a deflector is disclosed. The optical modulator for coupling a light beam to an optical fiber, the optical modulator includes: a laser diode for generating the light beam; and a deflector for deflecting a direction of the light beam according to an electric signal externally applied and outputting the defected light beam to the optical fiber, wherein the laser diode and the deflector are integrated with a multi-layer semiconductor structure in such a way that the light beam is modulated by changing a defection angle of the deflector.