摘要:
Gallium nitride based devices and, more particularly to the generation of holes in gallium nitride based devices lacking p-type doping, and their use in light emitting diodes and lasers, both edge emitting and vertical emitting. By tailoring the intrinsic design, a wide range of wavelengths can be emitted from near-infrared to mid ultraviolet, depending upon the design of the adjacent cross-gap recombination zone. The innovation also provides for novel circuits and unique applications, particularly for water sterilization.
摘要:
A p-channel tunneling field effect transistor (TFET) is selected from a group consisting of (i) a multi-layer structure of group IV layers and (ii) a multi-layer structure of group III-V layers. The p-channel TFET includes a channel region comprising one of a silicon-germanium alloy with non-zero germanium content and a ternary III-V alloy. An n-channel TFET is selected from a group consisting of (i) a multi-layer structure of group IV layers and (ii) a multi-layer structure of group III-V layers. The n-channel TFET includes an n-type region, a p-type region with a p-type delta doping, and a channel region disposed between and spacing apart the n-type region and the p-type region. The p-channel TFET and the n-channel TFET may be electrically connected to define a complementary field-effect transistor element. TFETs may be fabricated from a silicon-germanium TFET layer structure grown by low temperature (500 degrees Centigrade) molecular beam epitaxy.
摘要:
A silicon-based interband tunneling diode (10, 110) includes a degenerate p-type doping (22, 130) of acceptors, a degenerate n-type doping (32, 118) of donors disposed on a first side of the degenerate p-type doping (22, 130), and a barrier silicon-germanium layer (20, 136) disposed on a second side of the degenerate p-type doping (22, 130) opposite the first side. The barrier silicon-germanium layer (20, 136) suppresses diffusion of acceptors away from a p/n junction defined by the degenerate p-type and n-type dopings (22, 32, 118, 130).
摘要:
The present invention provides a method for forming quantum tunneling devices comprising the steps of: (1) providing a quantum well, the quantum well comprising a composite material, the composite material comprising at least a first and a second material; and (2) processing the quantum well so as to form at least one segregated quantum tunneling structure encased within a shell comprised of a material arising from processing the composite material, wherein each segregated quantum structure is substantially comprised of the first material. The present invention also comprises additional methods of formation, quantum tunneling devices, said electronic devices.
摘要:
Gallium nitride based devices and, more particularly to the generation of holes in gallium nitride based devices lacking p-type doping, and their use in light emitting diodes and lasers, both edge emitting and vertical emitting. By tailoring the intrinsic design, a wide range of wavelengths can be emitted from near-infrared to mid ultraviolet, depending upon the design of the adjacent cross-gap recombination zone. The innovation also provides for novel circuits and unique applications, particularly for water sterilization.
摘要:
A device includes: a first electrical contact; a second electrical contact; a semiconducting or semimetallic organic layer disposed at least partially between the first and second electrical contacts; and a tunneling barrier layer disposed at least partially between the semiconducting or semimetallic organic layer and the first electrical contact. The tunneling barrier layer has a thickness effective to enable flow of an electrical current through the tunneling barrier layer responsive to an operative electrical bias applied across the first and second electrical contacts, the electrical current exhibiting negative differential resistance for at least some applied electrical bias values. Circuits are also disclosed that utilize one or more negative differential resistance polymer diodes to implement logic, memory, or mixed signal applications.
摘要:
This invention pertains to buried heterostructure lasers which have been fabricated using a single step MOCVD growth of an MQW laser structure over a pattern etched GaAs substrate. The wet chemical etching of grooves having a dovetailed cross-section and being parallel to the [011] direction in GaAs substrates produced reentrant mesas which resulted in isolated laser active regions buried by the AlGaAs cladding layer. The 250 .mu.m long uncoated lasers emit at about 1 .mu.m. Lasers with coated facets have threshold currents of 20 mA and emit >100 mW per facet under room temperature operation. The external differential quantum efficiency for currents of from 30 mA to about 50 mA is found to be nearly independent of temperature in the range of 10.degree. C. to 90.degree. C. suggesting a low temperature dependence of leakage current.
摘要:
Interband tunnel diodes which are compatible with Si-based processes such as, but not limited to, CMOS and SiGe HBT fabrication. Interband tunnel diodes are disclosed (i) with spacer layers surrounding a tunnel barrier; (ii) with a quantum well adjacent to, but not necessarily in contact with, one of the injectors, and (iii) with a first quantum well adjacent to, but not necessarily in contact with, the bottom injector and a second quantum well adjacent to, but not necessarily in contact with, the top injector. Process parameters include temperature process for growth, deposition or conversion of the tunnel diode and subsequent thermal cycling which to improve device benchmarks such as peak current density and the peak-to-valley current ratio.
摘要:
A method for forming a patterned layer of a light-emissive material on a substrate, comprising the steps of providing a holed layer on the surface of the substrate, the holed layer being permanently attached to the substrate and defining a plurality of holes through which the underlying substrate is exposed, and applying a light-emissive material to the surface of the holed layer opposite the substrate and displacing the light-emissive material in fluid form across the surface of the holed layer so as to selectively deposit the material only in the holes of the holed layer.
摘要:
A metal-semiconductor-metal (MSM) photodetector, specifically a new, improved low noise device is disclosed. The disclosed device is a MSM photodiode in which the cathode and anode are made of different materials with optimal Schottky barrier heights. One of these materials is chosen to provide a high ratio of Schottky barrier height to hole transport and the other to provide a high ratio of Schottky barrier height to electron transport. The disclosed MSM photodetector is designed to allow each Schottky barrier to be individually optimized to the point that a wide bandgap Schottky barrier enhancement layer and its associated heterointerface may become unnecessary. Elimination of the charge buildup at the heterointerface enhances carrier extraction resulting in photodetectors with elevated quantum efficiency and enhanced bandwidths.