摘要:
Disclosed is an integrated circuit and a method of manufacturing an integrated circuit comprising a bipolar transistor, the method comprising providing a substrate comprising a pair of isolation regions separated by an active region comprising a collector; forming a base layer stack over said substrate; forming a migration layer having a first migration temperature and an etch stop layer; forming a base contact layer having a second migration temperature; etching an emitter window in the base contact layer, thereby forming cavities extending from the emitter window; and exposing the resultant structure to the first migration temperature in a hydrogen atmosphere, thereby filling the cavities with the migration layer material.
摘要:
The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region, a base region and a collector region (1, 2, 3) of, respectively, a first conductivity type, a second conductivity type opposite to the first conductivity type, and the first conductivity type. One of the emitter or collector regions (1, 3) comprises a nanowire (30). The base region (2) has been formed from a layer (20) at the surface of the semiconductor body (12); the other one (3, 1) of the emitter or collector regions (1, 3) has been formed in the semiconductor body (12) below the base region (2). The emitter or collector region (1, 3) comprising the nanowire (30) has been provided on the surface of the semiconductor body (12) such that its longitudinal axis extends perpendicularly to the surface.
摘要:
A method of manufacturing a semiconductor device comprising heterojunction bipolar transistors (HBTs), in which method a first semiconductor layer of monocrystalline silicon (5), a second semiconductor layer of monocrystalline silicon comprising 5 to 25 at. % germanium (6) and a third semiconductor layer of monocrystalline silicon (7) are successively provided on a surface (2) of a silicon wafer (1) by means of epitaxial deposition. Base zones of the transistors are formed in the second semiconductor layer. In this method, the second semiconductor layer is deposited without a base doping, said doping being formed at a later stage. Said doping can be formed by means of an ion implantation process or a VPD (Vapor Phase Doping) process. This method enables integrated circuits comprising npn-transistors as well as pnp-transistors to be manufactured.
摘要:
A method of manufacturing an integrated circuit comprising bipolar transistors including first and second type bipolar transistors, the method comprising providing a substrate comprising first isolation regions each separated from a second isolation region by an active region comprising a collector impurity of one of the bipolar transistors; forming a base layer stack over the substrate; forming a first emitter cap layer of a first effective thickness over the base layer stack in the areas of the first type bipolar transistor; forming a second emitter cap layer of a second effective thickness different from the first effective thickness over the base layer stack in the areas of the second type bipolar transistor; and forming an emitter over the emitter cap layer of each of the bipolar transistors. An IC in accordance with this method.
摘要:
Disclosed is an integrated circuit and a method of manufacturing an integrated circuit comprising a bipolar transistor, the method comprising providing a substrate comprising a pair of isolation regions separated by an active region comprising a collector; forming a base layer stack over said substrate; forming a migration layer having a first migration temperature and an etch stop layer; forming a base contact layer having a second migration temperature; etching an emitter window in the base contact layer, thereby forming cavities extending from the emitter window; and exposing the resultant structure to the first migration temperature in a hydrogen atmosphere, thereby filling the cavities with the migration layer material.
摘要:
The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region, a base region and a collector region (1, 2, 3) of, respectively, a first conductivity type, a second conductivity type opposite to the first conductivity type, and the first conductivity type. One of the emitter or collector regions (1, 3) comprises a nanowire (30). The base region (2) has been formed from a layer (20) at the surface of the semiconductor body (12); the other one (3, 1) of the emitter or collector regions (1, 3) has been formed in the semiconductor body (12) below the base region (2). The emitter or collector region (1, 3) comprising the nanowire (30) has been provided on the surface of the semiconductor body (12) such that its longitudinal axis extends perpendicularly to the surface.
摘要:
Method of manufacturing a semiconductor device, in which on a region of silicon oxide (5) situated next to a region of monocrystalline silicon (4) at the surface (3) of a semiconductor body (1), a non-monocrystalline auxiliary layer (8) is formed. The auxiliary layer is formed in two steps. In the first step, the silicon body is heated in an atmosphere comprising a gaseous arsenic compound; in the second step it is heated in an atmosphere comprising a gaseous silicon compound instead of said arsenic compound. Thus, the regions of silicon oxide are provided with an amorphous or polycrystalline silicon seed layer in a self-aligned manner.
摘要:
A method for forming an epitaxial base layer in a bipolar device. The method comprises the steps of: providing a structure having a field isolation oxide region (12) adjacent to an active silicon region (10); forming a silicon nitride/silicon stack (14, 16) above the field isolation oxide region (12), wherein the silicon nitride/silicon stack (14, 16) includes a top layer of silicon (14) and a bottom layer of silicon nitride (16); performing an etch to the silicon nitride/silicon stack (14, 16) to form a stepped seed layer, wherein the top layer of silicon is etched laterally at the same time the bottom layer of silicon nitride is etched; and growing an Si/SiGe/Si stack (20) over the stepped seed layer and active region (10).
摘要:
Disclosed is a method of manufacturing a bipolar transistor, comprising providing a substrate (10) comprising a first isolation region (12) separated from a second isolation region by an active region (11) comprising a collector impurity; forming a layer stack over said substrate, said layer stack comprising a base layer (14, 14′), a silicon capping layer (15) over said base layer and a silicon-germanium (SiGe) base contact layer (40) over said silicon capping layer; etching the SiGe base contact layer to form an emitter window (50) over the collector impurity, wherein the silicon emitter cap layer is used as etch stop layer; forming sidewall spacers (22) in the emitter window; and filling the emitter window with an emitter material (24). A bipolar transistor manufactured in accordance with this method and an IC comprising one or more of such bipolar transistors are also disclosed.
摘要:
A semiconductor arrangement including: a substrate having a substrate layer (13) with an upper and lower surface, the substrate layer (13) being of a first conductivity type; a first buried layer (12) in the substrate, extending along said lower surface below a first portion of said upper surface of said substrate layer (13), and a second buried layer (12) in the substrate, extending along said lower surface below a second portion of said upper surface of said substrate layer (13); a first diffusion (26) in said first portion of said substrate layer (13), being of a second conductivity type opposite to said first conductivity type and having a first distance to said first buried layer (12) for defining a first breakdown voltage between said first diffusion (26) and said first buried layer (12); a second diffusion (45) in said second portion of said substrate layer (13), being of said second conductivity type and having a second distance to said second buried layer (12) for defining a second breakdown voltage between said second diffusion (45) and said second buried layer (12); said first distance being larger than said second distance such that said first breakdown voltage is larger than said second breakdown voltage.