Abstract:
A brake caliper for a disk brake system of a motor vehicle, has a caliper body which is cast from a light metal alloy or from light metal, with a skeleton structure arranged inside the caliper body. The material of the skeleton structure has a higher modulus of elasticity than the material of the caliper body. The skeleton structure is cast into the caliper body so that the caliper body encases the skeleton structure.
Abstract:
A starting operation for a vehicle is carried out in two phases, specifically in a first phase, the input rotational speed is led to a desired rotational speed, and in a following second phase, a rotational speed difference signal formed from the difference between the input rotational speed and the output rotational speed is led to the zero value according to a predetermined desired course. The first phase begins when the starting device is not completely closed and the position of the power control element is below a limit value. The desired rotational speed is first determined as a function of the position of the power control element, the time variation of the position, and a signal describing the driver's driving style. With the determined desired rotational speed, a desired curve of a control signal for an actuator of the starting device is then determined in such a manner that, in the case of the actual position of the power control element, this desired rotational speed is definitely reached. The second phase of the starting operation begins when the input rotational speed signal has approximately reached the desired rotational speed or when a predetermined driving speed is reached. A rotational speed difference signal, that is, the slip existing in the starting device, is led toward zero according to a desired curve. The thermal stress to the clutch is used for influencing the starting operation in that the desired rotational speed is determined as a function of this stress.
Abstract:
A vehicle has at least one electric machine that can be operated as a generator, an electrical energy accumulator and a control unit for controlling the at least one electric machine and the electrical energy accumulator. The control unit operates so that in a recovery phase the vehicle can be decelerated by the generator load of the electric machine operated as a generator (2:a) and the resulting electrical energy (1:E) can be stored in the electrical energy accumulator. The control unit is configured so that the at least one electric machine operated as a generator in a recovery phase is operated by said control unit in a chronologically unlimited fashion with a predefinable overload (2′:a, 2″:a, 2′″:a).
Abstract:
In an arrangement for the cyclic adaptation of a characteristic for the changes in an automatic gearbox, a gear-change strategy which determines correction values by an algorithm that correlates external influencing variables and by a process involving evaluation of measured actual values of the influencing variables is used to adapt the characteristic both in the direction of the coordinate indicating a parameter dependent on the speed of travel and in the direction of the coordinate indicating a parameter associated with the engine torque. The process of adaptation is performed as a function of respectively associated correction values.
Abstract:
A control arrangement for a four-wheel drive vehicle which has at least one gear box or differential with controllable power transmission characteristics having circuitry for producing control signals in response to vehicle operating conditions and parameters. The arrangement allows for control of the distribution of torque to the respective wheels of the vehicle as a function of a selected number of parameters, such as relative or average wheel speed, engine speed, gas pedal or throttle valve angle, etc. The arrangement contemplates the simultaneous control of more than one adjustable gear box or differential as a function of commonly and/or separately sensed parameters.
Abstract:
A vehicle has at least one electric machine that can be operated as a generator, an electrical energy accumulator and a control unit for controlling the at least one electric machine and the electrical energy accumulator. The control unit operates so that in a recovery phase the vehicle can be decelerated by the generator load of the electric machine operated as a generator (2:a) and the resulting electrical energy (1:E) can be stored in the electrical energy accumulator. The control unit is configured so that the at least one electric machine operated as a generator in a recovery phase is operated by said control unit in a chronologically unlimited fashion with a predefinable overload (2′:a, 2″:a, 2′″:a).
Abstract:
In an arrangement and in a method for controlling an automatic shift device of a gear-change transmission, gear shifts which are initiated by the driver via the selector device and which would result in inadmissible engine speeds are prevented and it only becomes possible to permit them again via stored shift-line characteristic diagrams.
Abstract:
An arrangement for the control of the force-transmission of a four-wheel drive vehicle in which a main driving axle is driven directly by an internal combustion engine by way of a clutch transmission unit and an auxiliary driving axle is driven by the internal combustion engine by way of a continuously controllable longitudinal clutch. A desired traction force of all wheels is determined from a desired power output and from a velocity of the vehicle, from which a control magnitude for the control of the longitudinal clutch is obtained by a distribution factor dependent on operating or driving parameters. The longitudinal clutch can additionally be controlled either alone or advantageously also in combination with this control magnitude by a further control magnitude which is determined by a square of a rotational speed difference at the longitudinal clutch, having a weighting dependent on operating or driving parameters. The driving behavior achieved therewith enables a good steerability of the vehicle with maximum driving safety and traction.
Abstract:
A brake caliper for a disk brake system of a motor vehicle, has a caliper body which is cast from a light metal alloy or from light metal, with a skeleton structure arranged inside the caliper body. The material of the skeleton structure has a higher modulus of elasticity than the material of the caliper body. The skeleton structure is cast into the caliper body so that the caliper body encases the skeleton structure.
Abstract:
An installation for the control of a motor vehicle drive unit which includes a reciprocating piston engine, a hydraulically actuated clutch and a transmission. A drive pedal pick-up controls the throttle valve and therewith the engine torque by way of a first characteristic curve converter while it applies a signal by way of a second characteristic curve converter a to a control apparatus, to which is also fed at the same time the engine rotational speed n. The control apparatus forms the product a.multidot.n.sup.2 and applies the same as output signal to the electromagnetic actuating mechanism of the hydraulic clutch so that the pressure thereof and also the torque in the clutch is proportional to the product a.multidot.n.sup.2.