摘要:
Provided is a method of manufacturing a semiconductor device using a substrate processing apparatus including a reaction chamber in which a plurality of substrates are stacked at a predetermined distance; a first gas supply nozzle installed to extend to a region in which the plurality of substrates are stacked; a second gas supply nozzle installed to extend to a different position from a position at which the first gas supply nozzle is installed in the region in which the plurality of substrates are stacked; a first branch nozzle installed at the first gas supply nozzle in a direction parallel to major surfaces of the plurality of substrates, at least one line of which is branched in a direction of the second gas supply nozzle, and including at least one first gas supply port; and a second branch nozzle installed at the second gas supply nozzle in the direction parallel to the major surfaces of the plurality of substrates, at least one line of which is branched in a direction of the first gas supply nozzle, and including at least one second gas supply port; wherein the first gas supply port and the second gas supply port are installed adjacent to each other in a direction that the plurality of substrates are stacked, the method including the steps of: loading the plurality of substrates into the reaction chamber; and forming SiC films by supplying at least a silicon-containing gas and a chlorine-containing gas or a silicon/chlorine-containing gas through the first gas supply port and supplying at least a carbon-containing gas and a reduction gas through the second gas supply port.
摘要:
Disclosed is a substrate processing apparatus, including a reaction tube to process a substrate therein, wherein the reaction tube includes an outer tube, an inner tube disposed inside the outer tube, and a support section to support the inner tube, the inner tube and the support section are made of quartz or silicon carbide, and a shock-absorbing member is provided between the support section and the inner tube.
摘要:
There are provided the steps of loading a substrate into a reaction vessel; forming a film on the substrate while supplying a film forming gas into the reaction vessel; unloading the substrate after film formation from the reaction vessel; supplying a cleaning gas into the reaction vessel while lowering a temperature in the reaction vessel and removing a deposit deposited on at least an inner wall of the reaction vessel in the film forming step.
摘要:
A method of producing an SOI substrate having a single-crystal silicon layer on a buried oxide layer in an electrically insulating state from the substrate by implanting oxygen ions into a single crystal silicon substrate and practicing an anneal processing in an inert gas atmosphere at high temperatures to form the buried oxide layer. After the anneal processing in which the thickness of the buried oxide layer becomes a theoretical value in conformity with the thickness of the buried oxide layer formed by the implanted oxygen, the oxidation processing of the substrate is carried out in a high temperature oxygen atmosphere.
摘要:
A method of manufacturing a semiconductor device by using a substrate processing apparatus comprises a reaction chamber configured to process a plurality of substrates stacked at predetermined intervals, wherein a first gas flow from a first gas supply inlet and a second gas flow from a second gas supply inlet are crossed with each other before these gas flows reach the substrates. The method of manufacturing a semiconductor device comprises: loading the plurality of substrates into the reaction chamber; supplying a silicon-containing gas and a chlorine-containing gas from the first gas supply inlet into the reaction chamber, supplying a carbon-containing gas and a reducing gas from the second gas supply inlet into the reaction chamber and supplying a dopant-containing gas into the reaction chamber from the first gas supply inlet or the second gas supply inlet; and unloading the substrates from the reaction chamber.
摘要:
A heat-treating apparatus capable of realizing a highly precise processing maintaining a high degree of safety, and a method of producing substrates are provided. The heat-treating apparatus comprises a reaction tube for treating substrates; a manifold for supporting the reaction tube; and a heater provided surrounding the reaction tube to heat the interior of reaction tube; wherein the reaction tube and the manifold are in contact with each other as their continuous flat surfaces come in contact with each other; a cover member is provided to cover the contact portion between the reaction tube and the manifold from the outer side; and the cover member is provided with at least either a gas feed port or an exhaust port communicated with a space formed among the cover member, the reaction tube and the manifold.
摘要:
To prevent both slips caused by damage from projections, and slips caused by adhesive force occurring due to excessive smoothing.The heat treating apparatus includes a processing chamber for heat treating wafers and a boat for supporting the wafers in the processing chamber. The boat further includes a wafer holder in contact with the wafer and a main body for supporting the wafer holder. The wafer holder diameter is 63 to 73 percent of the wafer diameter, and the surface roughness Ra of the portion of the wafer holder in contact with the wafer is set from 1 μm to 1,000 μm. The wafer can be supported so that the amount of wafer displacement is minimal and both slips due to damage from projections on the wafer holder surface, and slips due to the adhesive force occurring because of excessive smoothing can be prevented in that state.
摘要:
A thermal treatment apparatus, a method for manufacturing a semiconductor device, and a method for manufacturing a substrate, wherein the occurrence of slip dislocation in a substrate during heat treatment is reduced, and a high-quality semiconductor device can be manufactured, are intended to be provided.A substrate support is formed from a main body portion and a supporting portion. In the main body portion, a plurality of placing portions extend parallel, and supporting portions are provided on the placing portions. A substrate is placed on the supporting portion. The supporting portion has a smaller area than an area of a flat face of the substrate, and is formed from a silicon plate having a thickness larger than thickness of the substrate, so that deformation during heat treatment is reduced. The supporting portion is made of silicon, and a layer coated with silicon carbide (SiC) is formed on a substrate-placing face of the supporting portion.
摘要:
[Problems] To prevent both slips caused by damage from projections, and slips caused by adhesive force occurring due to excessive smoothing.[Means for Solving the Problems] The heat treating apparatus includes a processing chamber for heat treating wafers and a boat for supporting the wafers in the processing chamber. The boat further includes a wafer holder in contact with the wafer and a main body for supporting the wafer holder. The wafer holder diameter is 63 to 73 percent of the wafer diameter, and the surface roughness Ra of the portion of the wafer holder in contact with the wafer is set from 1 μm to 1,000 μm. The wafer can be supported so that the amount of wafer displacement is minimal and both slips due to damage from projections on the wafer holder surface, and slips due to the adhesive force occurring because of excessive smoothing can be prevented in that state.
摘要:
Provided is a heat treatment apparatus that can form films having a uniform thickness on a plurality of substrates. The heat treatment apparatus comprises a process chamber configured to grow silicon carbide (SiC) films on wafers, a boat configured to hold a plurality of wafers in a state where the wafers are vertically arranged and approximately horizontally oriented so as to hold the wafers in the process chamber, a heating unit installed in the process chamber, and a gas supply nozzle configured to supply a reaction gas. The heating unit comprises a susceptor configured to cover at least a part of the boat, and a susceptor wall disposed between the boat and the susceptor.