Abstract:
There are provided a substrate processing apparatus capable of suppressing leakage of magnetic field during processing of a substrate. The substrate processing apparatus of the present invention includes: a reaction tube having a processing chamber provided therein to process a substrate; an induction heating unit installed outside of the reaction tube to accommodate the reaction tube, wherein the induction heating unit is configured to electromagnetically induction-heat the processing chamber by generating a magnetic field; an accommodation tube installed outside of the induction heating unit to accommodate the induction heating unit, wherein the accommodation tube accommodates the reaction tube and the induction heating unit in an air-tight manner; a shielding unit made of a conductive material installed to surround an outside of the accommodation tube; and an inert gas supply unit installed in a gap between the reaction tube and the accommodation tube where the induction heating unit is installed, wherein the inert gas supply unit is configured to supply an inert gas into the gap.
Abstract:
An oxygen-containing gas and a hydrogen-containing gas are supplied into a pre-reaction chamber heated to a second temperature and having the pressure set to less than an atmospheric pressure, and a reaction is induced between both gases in the pre-reaction chamber to generate reactive species, and the reactive species are supplied into the process chamber and exhausted therefrom, in which a substrate heated to the first temperature is housed and the pressure is set to less than the atmospheric pressure, and processing is applied to the substrate by the reactive species, with the second temperature set to be not less than the first temperature at this time.
Abstract:
An oxygen-containing gas and a hydrogen-containing gas are supplied into a pre-reaction chamber heated to a second temperature and having the pressure set to less than an atmospheric pressure, and a reaction is induced between both gases in the pre-reaction chamber to generate reactive species, and the reactive species are supplied into the process chamber and exhausted therefrom, in which a substrate heated to the first temperature is housed and the pressure is set to less than the atmospheric pressure, and processing is applied to the substrate by the reactive species, with the second temperature set to be not less than the first temperature at this time.
Abstract:
Production efficiency of a substrate (in particular, a substrate on which a SiC epitaxial film is formed) is improved and formation of the film inside a gas supply port is suppressed. This is accomplished by a substrate processing apparatus including a reaction chamber configured to accommodate a plurality of substrates 14, a heating part installed to surround the reaction chamber and configured to heat the reaction chamber, and a first gas supply pipe 60 extending in the reaction chamber, wherein the first gas supply pipe 60 includes a first gas supply port 68 configured to inject a first gas toward the plurality of substrates 14, and first shielding walls installed at both sides of the first gas supply port to expose the first gas supply port 68, the first shielding walls extending toward the plurality of substrates 14 from the first gas supply port 68.
Abstract:
At a low temperature of 500° C. to 700° C., the concentration of atomic oxygen is controlled in a wafer stacked direction, and the thickness distribution of oxide films is kept uniform in the wafer stacked direction. A semiconductor device manufacturing method includes a process of oxidizing substrates by supplying oxygen-containing gas and hydrogen-containing gas through a mixing part from an end side of a substrate arrangement region where the substrates are arranged inside the process chamber so that the gases flow toward the other end side of the substrate arrangement region, and supplying hydrogen-containing gas from mid-flow locations corresponding to the substrate arrangement region. The oxygen-containing gas and the hydrogen-containing gas reacts with each other in the mixing part to produce an oxidation species containing atomic oxygen, and the oxidation species has a maximum concentration at an ejection hole through which the oxidation species is ejected from the mixing part into the process chamber.
Abstract:
When processing such as SiC epitaxial growth is performed at an ultrahigh temperature of 1500° C. to 1700° C., a film-forming gas can be decreased to heat-resistant temperature of a manifold and film quality uniformity can be improved. A substrate processing apparatus includes a reaction chamber for processing a plurality of substrates, a boat for holding the plurality of substrates, a gas supply nozzle for supplying a film-forming gas to the plurality of substrates, an exhaust port for exhausting the film-forming gas supplied into the reaction chamber, a heat exchange part which defines a second flow path narrower than a first flow path defined by an inner wall of the reaction chamber and the boat, and a gas discharge part installed under the lowermost substrate of the plurality of substrates.
Abstract:
Provided is a heat treatment apparatus. The heat treatment apparatus comprises a process chamber configured to grow silicon carbide (SiC) epitaxial films on SiC substrates, a substrate holding tool configured to hold a plurality of substrates in a state where the substrates are vertically arranged and approximately horizontally oriented, so as to hold the substrates in the process chamber, a first reaction gas supply nozzle configured to supply a carbon-containing gas into the process chamber, a second reaction gas supply nozzle configured to supply a silicon-containing gas into the process chamber, a magnetic field generating coil disposed at an outside of the process chamber for electromagnetic induction heating, and a coil supporter configured to support the magnetic field generating coil. An upper end of the second reaction gas supply nozzle is lower than a lower end of the coil supporter configured to support the magnetic field generating coil.
Abstract:
A substrate processing apparatus includes: a reaction tube configured to process a plurality of substrates; a heater configured to heat the inside of the reaction tube; a holder configured to arrange and hold the plurality of substrates within the reaction tube; a first nozzle disposed in an area corresponding to a substrate arrangement area where the plurality of substrates are arranged, and configured to supply hydrogen-containing gas from a plurality of locations of the area into the reaction tube; a second nozzle disposed in the area corresponding to the substrate arrangement area, and configured to supply oxygen-containing gas from a plurality of locations of the area into the reaction tube; an exhaust outlet configured to exhaust the inside of the reaction tube; and a pressure controller configured to control pressure inside the reaction tube to be lower than atmospheric pressure, wherein the first nozzle is provided with a plurality of first gas ejection holes, and the second nozzle is provided with as many second gas ejection holes as at least the plurality of substrates so that the second gas ejection holes correspond to at least the respective substrates.
Abstract:
There is provided a semiconductor processing apparatus comprising a processing tube for housing a substrate support member that supports a plurality of substrates stacked at a prescribed pitch in a vertical direction; a gas supply part that extends in a direction in which the substrates are stacked in the processing tube and that has a plurality of gas supply openings; an exhaust part that opens onto the processing tube; a gas rectifying plate that is disposed in a space between a penumbra of the substrates supported on the substrate support member and an inner wall of the processing tube, and that extends from the gas supply part in a circumferential direction of the processing tube and in the direction in which the substrates are stacked; and a gas flow regulating part disposed in a space in the processing tube that is above a top-most gas supply opening and a top-most substrate and in a space in the processing tube that is below a bottom-most substrate and a bottom-most gas supply opening. A thin film formed on the substrate can be made more uniform.
Abstract:
Provided is a heat treatment apparatus that can form films having a uniform thickness on a plurality of substrates. The heat treatment apparatus comprises a process chamber configured to grow silicon carbide (SiC) films on wafers, a boat configured to hold a plurality of wafers in a state where the wafers are vertically arranged and approximately horizontally oriented so as to hold the wafers in the process chamber, a heating unit installed in the processing chamber, and a gas supply nozzle configured to supply a reaction gas. The heating unit comprises a susceptor configured to cover at least a part of the boat, and a susceptor wall disposed between the boat and the susceptor.