Abstract:
A display unit of which inspection process to inspect a connector for faulty connection can be automated. The display unit comprises a display section, a display driver IC among a plurality of types of display driver ICs capable of driving and controlling the display section, and an MPU sending a command and display data to the display driver IC. The display driver IC comprises an ID setting circuit and a command decoder decoding the command from the MPU. The MPU reads an ID information so as to control the display driver IC among a plurality of types of display driver ICs according to the corresponding control contents in the storage section among the plurality of types of control contents for a plurality of types of display driver ICs.
Abstract:
A gas sensor extending along an axial direction, the gas sensor including: a housing having a through hole, the through hole including an expanding portion at a leading end thereof; a gas sensing element inserted into the housing, having a closed leading end, and provided with a sensor electrode on an outer surface of the leading end side thereof; a heater inserted into the gas sensor, and including a contact portion where the heater contacts an inner surface; an protector fixed on the leading end side of the housing and having an outer protector including an outer air hole and an inner protector being positioned within the outer protector and spaced apart from the outer protector in the radial direction; and an inner air vent provided between the inner protector and the leading end of the housing.
Abstract:
For the purpose of preventing a situation in which the fiber density looks as if it suddenly decreases in a specific view direction, a method comprises: specifying a region of interest R1 in MR image data collected by a diffusion tensor method; defining regular grid points in the region of interest R1; defining points obtained by randomly moving the grid points as tracking start points S1, S2, . . . ; performing diffusion tensor analysis on each tracking start point S1, S2, . . . in the image data to determine a direction of a principal axis vector; tracking a fiber by repeatedly selecting a neighbor point along the direction of the principal axis vector and performing diffusion tensor analysis on the neighbor point to determine the direction of the principal axis vector; and producing and displaying an image of the tracked fibers as viewed in a desired view direction.
Abstract:
For the purpose of preventing a situation in which the fiber density looks as if it suddenly decreases in a specific view direction, a method comprises: specifying a region of interest R1 in MR image data collected by a diffusion tensor method; defining regular grid points in the region of interest R1; defining points obtained by randomly moving the grid points as tracking start points S1, S2, . . . ; performing diffusion tensor analysis on each tracking start point S1, S2, . . . in the image data to determine a direction of a principal axis vector; tracking a fiber by repeatedly selecting a neighbor point along the direction of the principal axis vector and performing diffusion tensor analysis on the neighbor point to determine the direction of the principal axis vector; and producing and displaying an image of the tracked fibers as viewed in a desired view direction.
Abstract:
The present invention provides a matrix type display device which simplifies the process in a display signal generating circuit while relieving the load on an external CPU, and which arranges freely character and icon display areas while preventing the quality of display from being degraded by the shadow phenomenon and others. A display code memory stores character display codes and icon display codes for one image at a desired address arrangement. A pattern generating circuit transfers image patterns for the display codes to a display signal transferring circuit through a multiplexer. A decoder selecting device is responsive to a decoder select signal to select a decoder, thereby controlling voluntarily the timing of latch signal generation. Display signal input in the time division manner is latched in first and second latch circuits through the latch signal. Thereafter, the display signal is transferred to a signal electrode driving circuit through a line memory to display an image on a matrix panel.
Abstract:
An objective of the present invention is to provide a power supply device, a liquid crystal display device, and a method of supplying power that can enable designs with lower power consumptions and can also enable higher display qualities. A first voltage Vx, which is a constant voltage, is generated by a first voltage generation portion in a voltage regulation portion. A second voltage Vy having a value independent of that of Vx is generated by a second voltage generation portion, and Vx and Vy are added by an adder portion to generate a regulated voltage Vreg. A control portion provides variable control of Vy within a voltage regulation range that is defined to include Vx. The regulated voltage Vreg is divided by a voltage divider portion within a multi-value voltage generation portion. The impedances of voltages V2 and V4 are converted by first impedance conversion portions (n-type OP-amps), and the impedances of voltages V1 and V3 are converted by second impedance conversion portions (p-type OP-amps).
Abstract:
A heat processing apparatus includes a heating plate configured to heat the substrate; a cover configured to surround a space above the heating plate; an exhaust gas flow forming mechanism configured to exhaust gas inside the cover to form exhaust gas flows within the space above the heating plate; a downflow forming mechanism configured to form downflows uniformly supplied onto an upper surface of the substrate placed on the heating plate; and a control mechanism configured to execute mode switching control between a mode arranged to heat the substrate while forming the downflows by the downflow forming mechanism and a mode arranged to heat the substrate while forming the exhaust gas flows by the exhaust gas flow forming mechanism.
Abstract:
An oscillation device and a display data processing device adjust variables such as the duty ratio of the oscillation frequency, and control autonomously timings between components such as memories. First and second switching devices disposed within charging and discharging devices are turned on and off by an output of a MOS buffer, enabling adjustment of the frequency and duty ratio of an oscillation signal. Equivalent circuits are provided corresponding to display data RAM, CGROM, and address decoders, data is read sequentially from the display data RAM and the CGROM when an EIRAM signal is enabled, and a DLAT signal is stored in a driver circuit. The equivalent circuits enable each of EIROM, EILAT, and RS signals at points when the read data is confirmed or thereafter. When the RS signal is enabled, EIRAM and other signals are sequentially disabled and the display data RAM and other components switch to a precharge operation.
Abstract:
A fire-resistant and light-weight construction board is prepared by treating fly ash and/or paper sludge incineration ash to a swelling treatment with a mineral acid and shaping and hardening the resultant mixture.
Abstract:
A heat processing apparatus includes a heating plate configured to heat the substrate; a cover configured to surround a space above the heating plate; an exhaust gas flow forming mechanism configured to exhaust gas inside the cover to form exhaust gas flows within the space above the heating plate; a downflow forming mechanism configured to form downflows uniformly supplied onto an upper surface of the substrate placed on the heating plate; and a control mechanism configured to execute mode switching control between a mode arranged to heat the substrate while forming the downflows by the downflow forming mechanism and a mode arranged to heat the substrate while forming the exhaust gas flows by the exhaust gas flow forming mechanism.