摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
Provided is a technology capable of improving the reliability of a semiconductor device using WPP by preventing a short-circuit failure between uppermost-level interconnects. In the present invention, a buffer layer is formed between an uppermost-level interconnect and redistribution interconnect. The uppermost-level interconnect is made of a copper film, while the buffer layer is made of an aluminum film. The redistribution interconnect is made of a film stack of a copper film and a nickel film. In such a semiconductor device, stress concentration occurs at a triple point when temperature cycling between low temperature and high temperature is performed. The stress concentration on the triple point is relaxed by the presence of the buffer layer, whereby the conduction of the stress to an interface just below the triple point can be suppressed. Peeling due to the stress at the interface can thus be prevented.
摘要:
A projector that projects an image on a screen, includes: plural image generating units that generate an image lights representing the image; a main body housing that houses the plural image generating units; and plural projection optical units that are provided in the main body housing to respectively correspond to the plural image generating units and project the image lights generated by the image generating units on the screen.
摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and a gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
A projector that projects an image on a screen, includes: plural image generating units that generate an image lights representing the image; a main body housing that houses the plural image generating units; and plural projection optical units that are provided in the main body housing to respectively correspond to the plural image generating units and project the image lights generated by the image generating units on the screen.
摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
By ion-implanting an inert gas, for example, nitrogen into a polycrystalline silicon film in an nMIS forming region from an upper surface of the polycrystalline silicon film down to a predetermined depth, an upper portion of the polycrystalline silicon film is converted to an amorphous form to form an amorphous/polycrystalline silicon film. And then, an n-type impurity, for example, phosphorous is ion-implanted into the amorphous/polycrystalline silicon film to form an n-type amorphous/polycrystalline silicon film, the n-type amorphous/polycrystalline silicon film is processed to form a gate electrode having a gate length shorter than 0.1 μm, a sidewall formed of an insulating film is formed on a side wall of the gate electrode, and a source/drain diffusion layer is formed. Thereafter, a cobalt silicide (CoSi2) layer is formed on an upper portion of the gate electrode by salicide technique.
摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and a gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
By ion-implanting an inert gas, for example, nitrogen into a polycrystalline silicon film in an nMIS forming region from an upper surface of the polycrystalline silicon film down to a predetermined depth, an upper portion of the polycrystalline silicon film is converted to an amorphous form to form an amorphous/polycrystalline silicon film. And then, an n-type impurity, for example, phosphorous is ion-implanted into the amorphous/polycrystalline silicon film to form an n-type amorphous/polycrystalline silicon film, the n-type amorphous/polycrystalline silicon film is processed to form a gate electrode having a gate length shorter than 0.1 μm, a sidewall formed of an insulating film is formed on a side wall of the gate electrode, and a source/drain diffusion layer is formed. Thereafter, a cobalt silicide (CoSi2) layer is formed on an upper portion of the gate electrode by salicide technique.
摘要:
A hand held printer for printing on a print paper when the printer is manually moved over the surface of the paper is provided, including a print mechanism supported within the housing to print inputted characters and drawings on the print paper upon manual manipulation of the housing. A thermal head is movably supported within the housing. A movement measurement unit indicates movement of the printer. A drive roller drives a ribbon take up roller and movement measurement unit. A clutch allows the drive roller to function only in a printing direction. A spring biases the drive roller towards an operating position, the drive roller moving to the print surface independently of the thermal head when the drive roller is biased by the spring.