摘要:
An integrated device with high insulation tolerance is provided. A groove having an inclined side surface is provided between adjacent devices. When a side where an electronic circuit or MEMS device is mounted is a front surface, the groove becomes narrower from the front surface to a back surface because of the inclined surface. A mold material (insulating material) is disposed inside the groove, so that the plurality of devices are mechanically joined together, being electrically insulated from one another. A line member that establishes an electrical conduction between the adjacent devices is formed to lie along the side surface and the bottom surface of the groove. To lead the line out to the backside, the bottom surface of the groove has a hole, so that the line member is exposed to the backside from the hole.
摘要:
An integrated device with high insulation tolerance is provided. A groove having an inclined side surface is provided between adjacent devices. When a side where an electronic circuit or MEMS device is mounted is a front surface, the groove becomes narrower from the front surface to a back surface because of the inclined surface. A mold material (insulating material) is disposed inside the groove, so that the plurality of devices are mechanically joined together, being electrically insulated from one another. A line member that establishes an electrical conduction between the adjacent devices is formed to lie along the side surface and the bottom surface of the groove. To lead the line out to the backside, the bottom surface of the groove has a hole, so that the line member is exposed to the backside from the hole.
摘要:
There is a problem that a reverse off-leak current becomes too large in a Schottky barrier diode. A semiconductor device of the present invention includes P-type first and second anode diffusion layers formed in an N-type epitaxial layer, N-type cathode diffusion layers formed in the epitaxial layer, a P-type third anode diffusion layer formed in the epitaxial layer so as to surround the first and second anode diffusion layers and to extend toward the cathode diffusion layers, and a Schottky barrier metal layer formed on the first and second anode diffusion layers.
摘要:
The method comprises at least three steps of a hydrogenation step (101) and/or a chlorination step (102), an impurity conversion step (103), and a purification step (104). In the impurity conversion step (103), an aldehyde compound represented by the general formula Ar—R—CHO (Ar; denotes a substituted or unsubstituted aryl group, R; denotes an organic group having two or more carbon atoms) is added to convert donor impurities and acceptor impurities contained in a chlorosilane distillate to a high-boiling substance. The chlorosilane distillate after the donor impurities and acceptor impurities have been converted to a high-boiling substance is sent to the purification step (104). In the purification step (104), high purity chlorosilanes from which the donor impurities and acceptor impurities have been thoroughly removed are obtained by using a distillation column or the like, where the high purity chlorosilanes are recovered outside the system from the top of the column.
摘要:
A process of forming an ultrafine crystal layer in a workpiece constituted by a metallic material. The process includes: performing a machining operation on a surface of the workpiece, so as to impart a large local strain to the machined surface of the workpiece, where the machining operation causes the machined surface of the workpiece to be subjected to a plastic working that causes to have large local strain in the form of a true strain of at least one, such that the ultrafine crystal layer is formed in a surface layer portion of the workpiece that defines the machined surface of the workpiece. Also disclosed are a nanocrystal layer forming process, a machine component having the ultrafine crystal layer or the nanocrystal layer, and a machine component producing process of producing the machine component.
摘要:
The invention provides a high voltage MOS transistor having a high gate breakdown voltage and a high source/drain breakdown voltage and having a low on-resistance. A gate electrode is formed on an epitaxial silicon layer with a LOCOS film being interposed therebetween. A P-type first drift layer is formed on the left side of the LOCOS film, and a P+-type source layer is disposed on the surface of the epitaxial silicon layer on the right side of the LOCOS film, being opposed to the first drift layer over the gate electrode. A P-type second drift layer is formed by being diffused in the epitaxial silicon layer deeper than the first drift layer, extending from under the first drift layer to under the left side of the LOCOS film. A recess is formed in a bottom portion of the second drift layer under the left end of the LOCOS film.
摘要:
An electrophotographic photoreceptor includes, a cylindrical photoreceptor pipe; at least one flange which is attached to an opening of one end of the photoreceptor pipe, and which is provided with a shaft part projecting outward from the one end at a shaft center position of the photoreceptor pipe; and an earth member which is arranged to penetrate through the shaft part of the at least one flange, and which is provided on its inward side with at least one first contact part which contacts an inner circumference of the photoreceptor pipe, and on its outward side with a second contact part.
摘要:
A process cartridge including an image bearing member; a lubricant applicator, which includes a lubricant application member configured to apply a solid lubricant to the surface of the image bearing member; and a smoothing member configured to smooth the applied solid lubricant, and at least one of a charging device, a developing device and a cleaning device, wherein the amount of the solid lubricant present on a portion of surface of the image bearing member, which is located between the lubricant application member and the smoothing blade, is from 0.11 to 1.2 mg/m2. The smoothing member is preferably a blade having a JIS-A hardness of not less than 79°. The process cartridge is preferably assembled by a method including setting the lubricant smoothing member, the lubricant and the lubricant application member to a housing of the process cartridge; and then setting the image bearing member to the housing.
摘要翻译:一种处理盒,包括图像承载部件; 润滑剂施加器,其包括构造成将固体润滑剂施加到图像承载部件的表面上的润滑剂施加部件; 以及平滑部件,其构造成使所施加的固体润滑剂平滑,以及充电装置,显影装置和清洁装置中的至少一个,其中存在于图像承载部件的表面的一部分上的固体润滑剂的量 位于润滑剂施加构件和平滑叶片之间的是0.11-1.2mg / m 2。 平滑部件优选是JIS-A硬度不小于79°的刀片。 处理盒优选通过包括将润滑剂平滑件,润滑剂和润滑剂施加构件设置到处理盒的壳体的方法来组装; 然后将图像承载部件设置到壳体。
摘要:
A method for fabricating a micromachine component of resin comprising step (a) of forming a sacrifice layer on a substrate, step (b) of forming at least two photosensitive resin composition layers sequentially on the sacrifice layer, and performing photolithography of each photosensitive resin composition layer to form an air gap portion defining the circumferential edge potion of the micromachine component and an air gap portion where an internal structure of the micromachine component is constituted to form a multilayer structure, step (c) for depositing dry film resist on the multilayer structure of the cured photosensitive resin composition layer, and performing photolithography of the dry film resist layer to form a cured dry film resist layer in which an air gap portion defining the circumferential edge of a shroud layer and an air gap where the structure of the shroud layer is constituted are formed, and step (d) for separating the micromachine component having the multilayer structure of the cured photosensitive resin composition layer and the cured dry film resist layer from the substrate by removing the sacrifice layer.
摘要:
A powder transport unit for transporting powders includes a transport pipe, a powder transport member, and a regulating member. The transport pipe is curvingly extended. The powder transport member is disposed in an entire length of the transport pipe and rotates in the transport pipe to transport the powders. The regulating member is integrally formed with the transport pipe at a downstream end of the transport pipe, and regulates a length of the powder transport member disposed in the entire length of the transport pipe. The regulating member includes an exit hole to pass through the powders transported by the powder transport member in the transport pipe.