Abstract:
A method is provided for producing an n-type or p-type epitaxial layer using a doped substrate material. The method includes growing a substrate (12), preferably from a material to which an epitaxial layer can be lattice-matched. The substrate (12) is doped with a predetermined concentration of dopant (14). Preferably, the dopant (14) possesses the ability to rapidly diffuse through a material. An epitaxial layer (16) is grown upon the doped substrate (12). The epitaxial layer (16) and the doped substrate are annealed, thereby causing the dopant (14) to diffuse from the substrate (14) into the epitaxial layer (16).
Abstract:
Solar cells are formed of semi-conductor spheres of P-type interior having an N-type skin are pressed between a pair of aluminum foil members forming the electrical contacts to the P-type and N-type regions. The aluminum foils, which comprise 1.0% silicon by weight, are flexible and electrically insulated from one another. The spheres are patterned in a foil matrix forming a cell. Multiple cells can be interconnected to form a module of solar cell elements for converting sun light into electricity.
Abstract:
Methods of growing Y-Ba-Cu-O compound crystal by suspended pellet partial melting and cooling and by skill melting, with crystal pulling after nucleation on a small platinum wedge or epitaxial growth on an inserted substrate.
Abstract:
Method and apparatus are disclosed for depositing a uniform layer of material, such as titanium dioxide, on the surface of an object, such as a silicon sphere of a solar array (7). Component gases are injected at predetermined rates into a heated reaction chamber (5) where they react. Because of the reaction rate and injection velocities of the gases, the reaction is substantially completed at a calculated location inside the reaction chamber (5). The object which is to receive the layer, such as the solar array (7), is placed at the calculated location in the reaction chamber (5). The platform (68) to which the solar array (7) is attached is simultaneously tilted and rotated such that all areas of the surface of the array (7) are uniformly exposed to the titanium dioxide reactant.
Abstract:
The disclosure relates to an infrared detector and method of making an infrared detector having HgCdTe detectors in the same focal plane of different compositions responsive to two or more different infrared frequency windows. This is accomplished by using SiO.sub.2 and/or Si.sub.x O.sub.y N.sub.z for masking and/or isolation during liquid phase epitaxial growth of the HgCdTe. The SiO.sub.2 and/or Si.sub.x O.sub.y N.sub.z are formed by plasma deposition.