Abstract:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise selectively catalytically reductive (SCR-active) mixed oxide consisting of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide and optionally tungsten oxide. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, mixed magnesium/aluminum oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
Abstract:
The invention relates to a method and an apparatus of operating a drive system comprising an engine and an exhaust gas purification unit containing a catalyst, where the engine emits an exhaust gas having an exhaust gas temperature and the catalyst has a catalytic activity for the purification of the exhaust gas. In the method, an aging-induced decrease in the catalytic activity of the catalyst is compensated at least part of the time by increasing the exhaust gas temperature of the engine.
Abstract:
The invention relates to a method and an apparatus of operating a drive system comprising an engine and an exhaust gas purification unit containing a catalyst, where the engine emits an exhaust gas having an exhaust gas temperature and the catalyst has a catalytic activity for the purification of the exhaust gas. In the method, an aging-induced decrease in the catalytic activity of the catalyst is compensated at least part of the time by increasing the exhaust gas temperature of the engine.
Abstract:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise selectively catalytically reductive (SCR-active) mixed oxide consisting of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide and optionally tungsten oxide. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, mixed magnesium/aluminum oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
Abstract:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite β. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
Abstract:
This invention relates to a method of operating a catalyst for treating the exhaust gas of an internal combustion engine, the catalyst comprising, in addition to catalytically active noble metals, also storage components for storing hydrocarbons. During engine operating phases at low exhaust-gas temperatures, such a catalyst stores the hydrocarbons contained in the exhaust gas without burning them. When the exhaust-gas temperature rises, these hydrocarbons are desorbed again and then oxidized at the catalytically active noble metals. This process can lead to uncontrolled, vigorous combustion of the hydrocarbons stored on the catalyst and, therefore, damage to the catalyst. According to the invention, this damage is avoided by continuously calculating the respective loading of the storage components with hydrocarbons and repeatedly regenerating the storage components depending on the loading by temporarily raising the exhaust-gas temperature before damage to the catalyst can occur.
Abstract:
This invention relates to a method of operating a catalyst for treating the exhaust gas of an internal combustion engine, the catalyst comprising, in addition to catalytically active noble metals, also storage components for storing hydrocarbons. During engine operating phases at low exhaust-gas temperatures, such a catalyst stores the hydrocarbons contained in the exhaust gas without burning them. When the exhaust-gas temperature rises, these hydrocarbons are desorbed again and then oxidized at the catalytically active noble metals. This process can lead to uncontrolled, vigorous combustion of the hydrocarbons stored on the catalyst and, therefore, damage to the catalyst. According to the invention, this damage is avoided by continuously calculating the respective loading of the storage components with hydrocarbons and repeatedly regenerating the storage components depending on the loading by temporarily raising the exhaust-gas temperature before damage to the catalyst can occur.
Abstract:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite β. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.