Abstract:
Disclosed herein is an inertial sensor including: a membrane; a mass body provided under the membrane; a plurality of patterned magnets provided under the mass body; and a magnetoresistive element provided to be spaced apart from the mass body and measuring static DC acceleration acting on the mass body through resistance changed according to magnetic fields of the plurality of patterned magnets. The plurality of patterned magnets and the magnetoresistive element are included, thereby making it possible to measure static DC acceleration (particularly, gravity acceleration) that is difficult to measure using an existing to piezoelectric element.
Abstract:
Provided is a method of generating a driving signal for driving a dual mode supply modulator for a power amplifier. The method includes obtaining an envelope of a complex baseband signal to be transmitted, comparing the envelope of the complex signal with a preset threshold value, when a current envelope of the complex signal is the preset threshold value or greater or when there is a result having the preset threshold value or greater in previous N comparisons, outputting a digital board output signal configured with a first logic level through a digital-to-analog converter; and when the current envelope of the complex signal is smaller than the preset threshold value and when there is no result having the preset threshold value or greater in the previous N comparisons, outputting a digital board output signal configured with a second logic level through the digital-to-analog converter.
Abstract:
Disclosed herein is a floating structure with a fuel gas tank storing a gaseous fuel used as fuel in a dual fuel propulsion system disposed under a cargo space. According to the present invention, there is provided a floating structure with a fuel gas tank storing a gaseous fuel used as fuel and used while floating at sea, including: a fuel gas tank disposed in the hull of the floating structure; and a cargo space disposed on the top of the fuel gas tank on the upper deck of the floating structure.
Abstract:
A booting method and an apparatus thereof for debugging in a portable terminal are provided. The method includes, when a booting event occurs, stacking a boot loader in a preset boot loader region of a Random Access Memory (RAM), and executing, and stacking an Operating System (OS) in a preset OS region of the RAM, wherein the boot loader region and the OS region of the RAM are set such that they do not overlap each other.
Abstract:
Provided is a fuel supply method for a marine structure using a high-pressure natural gas injection engine. BOG stored in a stored in the storage tank is compressed to a pressure of 12 to 45 bara (absolute pressure) and then reliquefied. A reliquefaction apparatus includes a cold box configured to exchange heat between a refrigerant and the BOG, a compression unit configured to compress the refrigerant heated by the cold box, an expansion unit configured to expand the compressed refrigerant to drop the temperature thereof, and a plurality of gas-liquid refrigerant separators configured to separate the refrigerant into a gaseous refrigerant and a liquid refrigerant. A gaseous refrigerant and a liquid refrigerant separated by the gas-liquid refrigerant separator disposed at an upstream side are again mixed and supplied to the gas-liquid refrigerant separator disposed at the most downstream among the plurality of gas-liquid refrigerant separators.
Abstract:
Disclosed herein are an inertial sensor and a method of manufacturing the same. The inertial sensor 100 according to a preferred embodiment of the present invention includes a membrane 110, a piezoelectric body 120 formed in a multilayer above the membrane 110, a first electrode 130 formed between the membrane 110 and the piezoelectric body 120, a second electrode 140 formed on an exposed surface of the piezoelectric body 120, and a third electrode 150 formed between layers of the piezoelectric body 120 formed in a multilayer.
Abstract:
The method includes performing a wired back-to-back test by forming M wired paths connecting one of the N transmission antennas with the M reception antennas through M cables, separating ith digital data corresponding to an ith receiver wired path from the plurality of digital data stored in the receiver wherein i is a natural number greater than 1 and smaller than M, extracting a time delay by decimating the separated ith digital data and performing sliding correlation on the decimated data, and extracting attenuation and phase characteristics of the ith receiver wired path by extracting samples after the time delay among the decimated samples.
Abstract:
A method of checking an error vector magnitude of transmitter in accordance with some embodiments of the inventive concept may include dividing a transmission baseband signal which the transmitter transmits into a plurality of processing units; performing a transmitter function and an ideal receiver function with respect to each of the plurality of processing units; generating a reception baseband signal by recombining a processing result of each of the plurality of processing units; and calculating an error vector magnitude (EVM) by comparing the transmission baseband signal with the reception baseband signal.A simplified method of checking an error vector magnitude of transmitter in accordance with some embodiments of the inventive concept may include generating symbols composed of only pilots; generating symbol composed of only data; and checking an error vector magnitude (EVM) using the all the symbols.
Abstract:
A signal amplifying apparatus, a wireless transmitting apparatus, and a signal amplifying method are provided. The signal amplifying apparatus modulates an envelope signal using a multi-bit quantizer, thereby increasing coding efficiency and tracking optimal supply voltage with respect to envelope variation due to the use of the multi-bit quantizer.
Abstract:
The present disclosure relates to a molecularly imprinted structure for detection of a pentraxin protein and a method for preparing the same by synthesizing a reactive group-pentraxin protein ligand complex specifically reacting with the pentraxin protein and being polymerizable with a crosslink agent to detect a pentraxin protein by using the complex. The present disclosure also provides a chip for detection of a C-reactive protein and a method for preparing the same, the chip including a molecularly imprinted layer having excellent sensitivity to a C-reactive protein and an improved binding force to a metal substrate by using click chemistry.