Abstract:
A microfluidic device comprising a flow channel that utilizes various principles of fluid dynamics to simplify the processes of preparing a sample prior to in vitro diagnostic analysis. A flow channel wherein flow conditions result in a Reynolds number no greater than about 2000, preferably no greater than about 1000, provides enhanced separation of blood cells from a liquid medium, i.e., serum or plasma.
Abstract:
A container having a radio frequency identification tag attached thereto by means of a stud or a radio frequency identification tag retainer_projecting from the exterior surface of the container. The container can be used to contain medical products, and the container can be of various types, such as, for example, a bottle, a micro-well plate, a cartridge, a tube. In one embodiment, the container has a radio frequency identification tag affixed thereto. The container comprises a mouth, a neck, a body, and a bottom. The container can also have a closure, a septum, or an adapter for other components of an automated clinical analyzer. The neck is capable of receiving a closure. A stud or a radio frequency identification tag retainer projecting from the bottom of the container, preferably the center of the bottom of the container, serves to retain the radio frequency identification during the attachment of the radio frequency identification tag to the container. A radio frequency identification tag protector can be used to provide protection for the radio frequency identification tag.
Abstract:
A fluid pumping mechanism in one embodiment includes a fluid reservoir, and a multiple layer film extending over a portion of the fluid reservoir, wherein fluid is moved through the reservoir by movement of the film from a first position to a second position, the film including first and second layers, each of first and second layers comprising a blend of a polypropylene and a styrene ethylene butadiene block copolymer. Peritoneal dialysis systems are also provided and may include a peritoneal dialysis machine and a disposable cassette defining at least one pump chamber and having a multiple layer film extending over a portion of the at least one pump chamber, the film including first and second layers, each of the first and second layers comprising a blend of a polypropylene and a styrene ethylene butadiene block copolymer.
Abstract:
The present invention provides a polymer blend having: a first component of a propylene containing polymer in an amount by weight of the blend from about 25% to about 35%; a second component selected from the group consisting of polyesters, polyester elastomers, and polyurethanes, the second component present in an amount by weight of the blend of from about 35% to about 45%; and a third component of an ethylene vinyl acetate copolymer in an amount by weight of the blend from about 25% to about 35%.
Abstract:
The present invention provides a tubing assembly having a sidewall having a first layer. The first layer is fabricated from a first polymer blend comprising a first component of a material not thermally responsive to laser beam and selected from the group consisting of polyolefins, ethylene and lower alkyl acrylate copolymers, ethylene and lower alkyl substituted alkyl acrylate copolymers, ethylene vinyl acetate copolymers, polybutadienes, polyesters, polyamides, and styrene and hydrocarbon copolymers. A second component of the blend is a laser responsive material having low solubility in aqueous medium; and the blend being sufficiently thermally responsive to exposure to a laser beam having a wavelength within a range of wavelengths from about 700 nm to about 1500 nm to melt upon exposure to the laser beam for a short period of time. The assembly also has an end cap film covering the fluid outlet.
Abstract:
A method, system and apparatus for performing peritoneal dialysis are provided. To this end, in part, a film is provided. The film includes a layer of a polymer blend having from about 90% to about 99% by weight of a first component containing a styrene and hydrocarbon copolymer and from about 10% to about 1% of a high melt strength polypropylene.
Abstract:
A container comprising a body having embedded therein a plurality of chipless radio frequency identification elements. The chipless radio frequency identification elements comprise a plurality of categories of resonant elements. The resonant elements can be utilized in a system having a binary code feature. The combination of different resonant elements can be read and translated to identify the features of a particular product. The container can be prepared by compounding moldable compositions with the resonant elements and molding the moldable compositions containing the resonant elements into the final product. The invention also provides a system and a method for reading the binary code provided by the chipless radio frequency identification elements.
Abstract:
A method for applying a radio frequency identification tag to an object, e.g., a container, by means of an insert molding process or in-mold decorating process. Such a method can be utilized to simplify the manufacturing processes for applying a radio frequency identification tag to an object, e.g., a container. The molding process can be a conventional molding process, such as, for example, injection molding, blow molding, compression molding, transfer molding, and rotational molding. However, the conventional molding process is modified by inserting a radio frequency identification tag into the cavity of the mold prior to forming the molded article. The modified molding process results in a molded article having a radio frequency identification tag encapsulated by the polymeric material of the molded article.
Abstract:
A peritoneal dialysis system includes a disposable cassette including a flexible sheet; a hardware unit including (i) at least one pump actuator and piston head moved by the pump actuator, (ii) at least one valve actuator, (iii) at least one sensor, and (iv) a disposable cassette interface for interfacing with the disposable cassette, the disposable cassette interface including: (a) at least one pump aperture, the at least one piston head moveable out of and retractable into the at least one pump aperture to move a corresponding pumping portion of the flexible sheet of the disposable cassette, the piston head moving within a vacuum chamber, the vacuum chamber enabling a vacuum to be pulled around the piston head to the flexible sheet of the disposable cassette; (b) at least one valve aperture, at least a portion of the at least one valve actuator located in the valve aperture to move a valve portion of the flexible sheet of the disposable cassette; and (c) at least one sensor aperture, the at least one sensor located in the at least one sensor aperture, the at least one sensor operable with a sensor portion of the flexible sheet of the disposable cassette.