Abstract:
This disclosure relates to an etching composition containing at least one sulfonic acid, at least one compound containing a halide anion, the halide being chloride or bromide, at least one compound containing a nitrate or nitrosyl ion, and water. The at least one sulfonic acid can be from about 25% by weight to about 95% by weight of the composition. The halide anion can be chloride or bromide, and can be from about 0.01% by weight to about 0.5% by weight of the composition. The nitrate or nitrosyl ion can be from about 0.1% by weight to about 20% by weight of the composition. The water can be at least about 3% by weight of the composition.
Abstract:
A polishing liquid is provided with which a polishing rate relative to a conductive metal wiring typically represented by a copper wiring on a substrate having a barrier layer containing manganese and/or a manganese alloy and an insulating layer on the surface (particularly, copper oxide formed at the boundary) is decreased and with which less step height between the conductive metal wiring and the insulating layer is formed, and a polishing method using the polishing liquid is also provided. The polishing liquid includes: colloidal silica particles exhibiting a positive ζ potential at the surface thereof; a corrosion inhibiting agent; and an oxidizing agent, in which the polishing liquid is used in a chemical mechanical polishing process for a semiconductor device having, on a surface thereof, a barrier layer containing manganese and/or a manganese alloy, a conductive metal wiring, and an insulating layer.
Abstract:
This disclosure relates to an etching composition containing at least one sulfonic acid, at least one compound containing a halide anion, the halide being chloride or bromide, at least one compound containing a nitrate or nitrosyl ion, and water. The at least one sulfonic acid can be from about 25% by weight to about 95% by weight of the composition. The halide anion can be chloride or bromide, and can be from about 0.01% by weight to about 0.5% by weight of the composition. The nitrate or nitrosyl ion can be from about 0.1% by weight to about 20% by weight of the composition. The water can be at least about 3% by weight of the composition.
Abstract:
A polishing liquid is provided with which a polishing rate relative to a conductive metal wiring typically represented by a copper wiring on a substrate having a barrier layer containing manganese and/or a manganese alloy and an insulating layer on the surface (particularly, copper oxide formed at the boundary) is decreased and with which less step height between the conductive metal wiring and the insulating layer is formed, and a polishing method using the polishing liquid is also provided. The polishing liquid includes: colloidal silica particles exhibiting a positive ζ potential at the surface thereof, a corrosion inhibiting agent; and an oxidizing agent, in which the polishing liquid is used in a chemical mechanical polishing process for a semiconductor device having, on a surface thereof, a barrier layer containing manganese and/or a manganese alloy, a conductive metal wiring, and an insulating layer.
Abstract:
The invention provides a polishing liquid for polishing a barrier layer of a semiconductor integrated circuit, the polishing liquid comprising: a diquaternary ammonium cation; a corrosion inhibiting agent; and a colloidal silica, wherein the pH of the polishing liquid is in the range of 2.5 to 5.0. According to the invention, a polishing liquid capable of achieving a superior barrier layer polishing rate, as well as suppressing the occurrence of scratching due to the agglomeration of solid abrasive grains can be provided.
Abstract:
A method of etching a semiconductor substrate, having the steps of: providing a semiconductor substrate having a first layer containing Ti and a second layer containing at least one of Cu, SiO, SiN, SiOC and SiON; providing an etching liquid containing, in an aqueous medium, a basic compound composed of an organic amine compound and an oxidizing agent, the etching liquid having a pH from 7 to 14; and applying the etching liquid to the semiconductor substrate to selectively etch the first layer of the semiconductor substrate.
Abstract:
Provided is a polishing fluid that has a fast polishing rate, and can selectively suppress polishing of layers including polysilicon or modified polysilicon during the chemical mechanical polishing in the manufacture of semiconductor integrated circuits, and a polishing method using the same. A polishing fluid used for the chemical mechanical polishing in which each of the components represented by the following (1) and (2) is included, the pH is 1.5 to 5.0, and a polishing workpiece can be polished in a range of a ratio represented by RR (other)/RR (p-Si) when the polishing rate of the first layer is RR (p-Si), and the polishing rate of the second layer is RR (other) of 1.5 to 200. (1) Colloidal silica particles (2) At least one inorganic phosphate compound selected from phosphoric acid, pyrophosphoric acid, and polyphosphoric acid.
Abstract:
A polishing liquid which is used for chemical mechanical polishing of a body to be polished in a planarization process for manufacturing of a semiconductor integrated circuit, the body to be polished including at least a first layer containing polysilicon or modified polysilicon and a second layer containing at least one selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbide, and silicon oxynitride, the polishing liquid having a pH of 1.5 to 7.0, including (1) colloidal silica particles, (2) an organic acid, and (3) an anionic surfactant, and being capable of selectively polishing the second layer with respect to the first layer.
Abstract:
A cleaning agent for a semiconductor substrate, which is capable of exerting cleaning power equivalent to that of an SPM cleaning agent, greatly improving damage of a semiconductor substrate by the SPM cleaning agent, and efficiently stripping and removing impurities adhered to the surface of the semiconductor substrate, particularly attached substances such as an ion-implanted resist, a cleaning method using the cleaning agent, and a method for producing a semiconductor element are provided. The cleaning agent for a semiconductor substrate comprises sulfuric acid, hydrogen peroxide and an alkylene carbonate. The method for cleaning a semiconductor substrate comprises cleaning the semiconductor substrate with sulfuric acid, hydrogen peroxide and an alkylene carbonate in combination.
Abstract:
Disclosed are devices capable of performing a massage and wash on a scalp or massage on an affected area gently and effectively by a brush section or a treating section thereof. A plurality of projections are integrally formed on a surface of a flexible body plate of brush section, so that the projections are symmetrical with respect to an axis line A and an axis line D of the projection is perpendicular with the surface of the body plate. An edge of the body plate is fixed on a frame. A motor serving as a drive section is activated allowing a reciprocating drive means to repeatedly deform the body plate coupled thereto between an upwardly-deflected curved concave position and a downwardly-deflected curved convex position along the axis line A, thereby allowing each distance among a plurality of the projections to open and close-repeatedly to provide an repetitive action of kneading and pushing/stretching the scalp. Accordingly, the scalp massage and the scalp and hair wash are achieved.