摘要:
Disclosed is a method for fabricating a shallow and narrow trench field-effect transistor (trench FET). The method includes forming a trench within a semiconductor substrate of a first conductivity type, the trench including sidewalls and a bottom portion. The method further includes forming a substantially uniform gate dielectric in the trench, and forming a gate electrode within said trench and over said gate dielectric. The method also includes doping the semiconductor substrate to form a channel region of a second conductivity type after forming the trench. In one embodiment, the doping step is performed after forming the gate dielectric and after forming the gate electrode. In another embodiment, the doping step is performed after forming the gate dielectric, but prior to forming the gate electrode. Structures formed by the invention's method are also disclosed.
摘要:
A trench MOS-gated semiconductor device that includes field relief regions formed below its base region to improve its breakdown voltage, and method for its manufacturing.
摘要:
One exemplary disclosed embodiment comprises a semiconductor package including a vertical conduction control transistor and a vertical conduction sync transistor. The vertical conduction control transistor may include a control source, a control gate, and a control drain that are all accessible from a bottom surface, thereby enabling electrical and direct surface mounting to a support surface. The vertical conduction sync transistor may include a sync drain on a top surface, which may be connected to a conductive clip that is coupled to the support surface. The conductive clip may also be thermally coupled to the control transistor. Accordingly, all terminals of the transistors are readily accessible through the support surface, and a power circuit, such as a buck converter power phase, may be implemented through traces of the support surface. Optionally, a driver IC may be integrated into the package, and a heatsink may be attached to the conductive clip.
摘要:
Disclosed is a method for fabricating a shallow and narrow trench field-effect transistor (trench FET). The method includes forming a trench within a semiconductor substrate of a first conductivity type, the trench including sidewalls and a bottom portion. The method further includes forming a substantially uniform gate dielectric in the trench, and forming a gate electrode within said trench and over said gate dielectric. The method also includes doping the semiconductor substrate to form a channel region of a second conductivity type after forming the trench. In one embodiment, the doping step is performed after forming the gate dielectric and after forming the gate electrode. In another embodiment, the doping step is performed after forming the gate dielectric, but prior to forming the gate electrode. Structures formed by the invention's method are also disclosed.
摘要:
One exemplary disclosed embodiment comprises a semiconductor package including a vertical conduction control transistor and a vertical conduction sync transistor. The vertical conduction control transistor may include a control source, a control gate, and a control drain that are all accessible from a bottom surface, thereby enabling electrical and direct surface mounting to a support surface. The vertical conduction sync transistor may include a sync drain on a top surface, which may be connected to a conductive clip that is coupled to the support surface. The conductive clip may also be thermally coupled to the control transistor. Accordingly, all terminals of the transistors are readily accessible through the support surface, and a power circuit, such as a buck converter power phase, may be implemented through traces of the support surface. Optionally, a driver IC may be integrated into the package, and a heatsink may be attached to the conductive clip.
摘要:
According to one embodiment, a semiconductor device including a voltage controlled termination structure comprises an active area including a base region of a first conductivity type formed in a semiconductor body of a second conductivity type formed over a first major surface of a substrate of the second conductivity type, a termination region formed in the semiconductor body adjacent the active area and including the voltage controlled termination structure. The voltage controlled termination structure includes an electrode electrically connected to a terminal of the semiconductor device. In one embodiment, the electrode of the voltage controlled termination structure is electrically connected to a gate terminal of the semiconductor device. In one embodiment, the electrode of the voltage controlled termination structure is electrically connected to a source terminal of the semiconductor device.
摘要:
According to an exemplary embodiment, a trench field-effect transistor (trench FET) includes a trench formed in a semiconductor substrate, the trench including a gate dielectric disposed therein. A source region is disposed adjacent the trench. The trench FET also has a gate electrode including a lower portion disposed in the trench and a proud portion extending laterally over the source region. A silicide source contact can extend vertically along a sidewall of the source region. Also, a portion of the gate dielectric can extend laterally over the semiconductor substrate. The trench FET can further include a silicide gate contact formed over the proud portion of the gate electrode.
摘要:
According to an exemplary embodiment, a trench field-effect transistor (trench FET) includes a trench formed in a semiconductor substrate, the trench including a gate dielectric disposed therein. A source region is disposed adjacent the trench. The trench FET also has a gate electrode including a lower portion disposed in the trench and a proud portion extending laterally over the source region. A silicide source contact can extend vertically along a sidewall of the source region. Also, a portion of the gate dielectric can extend laterally over the semiconductor substrate. The trench FET can further include a silicide gate contact formed over the proud portion of the gate electrode.
摘要:
According to one embodiment, a semiconductor device including a voltage controlled termination structure comprises an active area including a base region of a first conductivity type formed in a semiconductor body of a second conductivity type formed over a first major surface of a substrate of the second conductivity type, a termination region formed in the semiconductor body adjacent the active area and including the voltage controlled termination structure. The voltage controlled termination structure includes an electrode electrically connected to a terminal of the semiconductor device. In one embodiment, the electrode of the voltage controlled termination structure is electrically connected to a gate terminal of the semiconductor device. In one embodiment, the electrode of the voltage controlled termination structure is electrically connected to a source terminal of the semiconductor device.