摘要:
The present invention is directed to address the following problem: in an exhaust gas purification catalyst comprising a dual catalyst of a combination of a startup catalyst and an underfloor catalyst, reduction in the gas diffusivity of the underfloor catalyst results in reduction in the use efficiency of a catalytic active site, resulting in reduction in purification performance. The present invention relates to an exhaust gas purification catalyst comprising a dual catalyst of a combination of a startup catalyst and an underfloor catalyst having a catalyst coating where a large number of voids are included, wherein high-aspect-ratio pores having an aspect ratio of 5 or more account for a certain rate or more of the whole volume of the voids, to thereby enhance the purification performance of the catalyst.
摘要:
An object of the present invention is to provide an exhaust gas purification catalyst which can exhibit sufficient purification performance even under a high Ga condition. The present invention relates to an exhaust gas purification catalyst comprising a substrate and a catalyst coating layer formed on the substrate, wherein the catalyst coating layer comprises catalyst particles, the catalyst coating layer having an upstream region extending by 40 to 60% of the entire length of the substrate from an upstream end of the catalyst in the direction of an exhaust gas flow and a downstream region corresponding to the remainder portion of the catalyst coating layer, the composition of the catalyst particle of the upstream region being different from that of the downstream region. The downstream region in the direction of an exhaust gas flow has a structure where a void is included in a large number, and furthermore high-aspect-ratio pores having an aspect ratio of 5 or more account for a certain percentage or more of the whole volume of voids. Thus, the exhaust gas purification catalyst exhibits enhanced purification performance.
摘要:
The problem of the present invention is to provide an exhaust gas purification catalyst which can exhibit sufficient purification performance under a high Ga condition while having a resistance to stress such as high-temperature and poisonous substances. The present invention relates to an exhaust gas purification catalyst comprising two or more catalyst coating layers on a substrate, wherein a lower catalyst coating layer that is present lower with respect to an uppermost catalyst coating layer has a structure where a large number of voids are included and high-aspect-ratio pores having an aspect ratio of 5 or more account for a certain proportion or more of the whole volume of voids, thereby to improve gas diffusivity in the lower catalyst coating layer.
摘要:
An exhaust gas purifying catalyst includes a substrate that defines an exhaust gas passage; a lower catalyst layer formed over the substrate, and an upper catalyst layer formed over the lower catalyst layer. The lower catalyst layer has a lower catalytic precious metal that contains at least one of Pt and Pd, and a lower-layer carrier that supports the lower catalytic precious metal. The upper catalyst layer has an upper catalytic precious metal that contains Rh, and an upper-layer carrier that supports the upper catalytic precious metal. The upper-layer carrier includes an inorganic mixed oxide that contains Ce, Zr, Al, Nd, and at least one element selected from the group consisting of rare earth elements other than Ce and alkaline earth elements. The Nd is unevenly distributed in covering layers that covers surfaces of interior regions within the inorganic mixed oxide.
摘要:
A metal oxide catalyst carrier particle has a center portion and an outer skin portion each containing a first metal oxide and a second metal oxide. The center portion and the outer skin portion are different in composition. The mole fraction of the metal of the first metal oxide is higher in the center portion than in the outer skin portion and the mole fraction of the metal of the second metal oxide is higher in the outer skin portion than in the center portion. The second metal oxide is selected from the group consisting of rare earth oxides, except for ceria, and alkali earth metal oxides. In addition, platinum is supported on the metal oxide catalyst carrier particle, thus forming an exhaust gas purification catalyst.
摘要:
An exhaust gas purifying catalyst includes a substrate that defines an exhaust gas passage; a lower catalyst layer formed over the substrate, and an upper catalyst layer formed over the lower catalyst layer. The lower catalyst layer has a lower catalytic precious metal that contains at least one of Pt and Pd, and a lower-layer carrier that supports the lower catalytic precious metal. The upper catalyst layer has an upper catalytic precious metal that contains Rh, and an upper-layer carrier that supports the upper catalytic precious metal. The upper-layer carrier includes an inorganic mixed oxide that contains Ce, Zr, Al, Nd, and at least one element selected from the group consisting of rare earth elements other than Ce and alkaline earth elements. The Nd is unevenly distributed in covering layers that covers surfaces of interior regions within the inorganic mixed oxide.
摘要:
An ordinary-temperature purifying catalyst includes an oxide having an oxygen defect introduced by a reduction treatment, and a noble metal loaded on the oxide. For example, the oxide can be at least one oxide selected from the group consisting of cerium oxides and zirconium oxides, at least a part of which has an oxygen defect. The catalyst can purify an environmental loading material, such as carbon monoxide, a nitrogen oxide, ethylene, formaldehyde, trimethylamine, methyl mercaptan and acetaldehyde, in air at an ordinary temperature. A method for how to use the catalyst is also disclosed.
摘要:
The object of the present invention is to provide an exhaust gas purifying catalyst that can achieve high purification performance while suppressing H2S emissions. The object is solved by an exhaust gas purifying catalyst in which the lower layer of the catalyst coating layer comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % in relation to the total cation amount, and the molar ratio of (cerium+additional element):(zirconium) is within the range from 43:57 to 48:52.
摘要:
An object of the present invention is to provide an exhaust gas purification catalyst which can exhibit high durability and warm-up performance. The present invention relates to an exhaust gas purification catalyst comprising a substrate and a catalyst coating layer formed on the substrate, wherein the catalyst coating layer comprises catalyst particles, the catalyst coating layer having an upstream region extending by 40 to 60% of the entire length of the substrate from an upstream end of the catalyst in the direction of an exhaust gas flow and a downstream region corresponding to the remainder portion of the catalyst coating layer, the composition of the catalyst particle of the upstream region being different from that of the downstream region. The upstream region in the direction of an exhaust gas flow has a structure where a void is included in a large number, and furthermore high-aspect-ratio pores having an aspect ratio of 5 or more account for a certain percentage or more of the whole volume of voids. Thus, the exhaust gas purification catalyst exhibits enhanced purification performance.
摘要:
A composite oxide with a high oxygen storage capacity is provided without using cerium. The composite oxide is an iron oxide-zirconia composite oxide containing iron, zirconium, and a rare-earth element. The total content of Fe2O3, ZrO2, and an oxide of the rare-earth element is not less than 90 mass %, the content of an iron oxide in terms of Fe2O3 is 10 to 90 mass %, and the absolute value of the covariance COV(Fe, Zr+X) of the composite oxide, which has been baked in the atmosphere at a temperature of greater than or equal to 900° C. for 5 hours or more, determined by the following Formulae (1) to (3), is not greater than 20: [ Math . 1 ] R i ( Fe ) = I i ( Fe ) × 100 I i ( Fe ) + I i ( Zr ) + I i ( X ) ( 1 ) R i ( Zr + X ) = { I i ( Zr ) + I i ( X ) } × 100 I i ( Fe ) + I i ( Zr ) + I i ( X ) ( 2 ) COV ( Fe , Zr + X ) = 1 n ∑ i = 1 n [ { R i ( Fe ) - R av ( Fe ) } × { R i ( Zr + X ) - R av ( Zr + X ) } ] ( 3 ) (in the formula, Ii(Fe), Ii(Zr), and Ii(X) respectively represent the ratios of the X-ray intensities of iron, zirconium, and the rare-earth element measured at a measurement point i (where i=1 to n) to the 100% intensities of the respective elements as measured by subjecting the composite oxide to a ray analysis through EPMA (WDX: wavelength dispersive X-ray spectrometry), where Rav(Fe) and Rav(Zr+X) represent the mean values of Ri(Fe) and Ri(Zr+X), respectively, at all measurement points n).