Abstract:
A system and method for removing one or more predetermined gases from an environment is herein disclosed. An embodiment of the system and method will now be described. A means for conveying a fluid and a means for flowing the fluid is combined with adsorber and desorber sections. The fluid flows in the means for conveying the fluid by the means for flowing the fluid. Comparably, the fluid flows in the adsorber and desorber sections not by the means for flowing the fluid, but rather by capillary action. In the adsorber section, the environment is in direct contact with the fluid. The fluid is capable for adsorbing one or more gases from the environment. The fluid exits the adsorber section and subsequently flows into the desorber section. The desorber section is self-contained wherein an inner portion of the desorber section is not in direct contact with the environment. In the desorber section, the one or more gases are desorbed from the fluid into the inner portion of the desorber section. In an embodiment, the one or more gases exit the desorber section and the system as a whole.
Abstract:
A system and method of providing an affordable navigation, guidance and control system for arbitrary nano/micro launch vehicles by integrating commercial grade sensors with advanced estimation algorithms in a manner that provides sufficient accuracy of the resulting vehicle state estimates to inject nano/micro satellites into low earth orbits. The system and method uses commercial grade sensors and an advanced sensor-fusion estimator software that estimates and removes the estimated measurement errors and filters noise produced by the commercial grade sensors, resulting in estimated states with suitable accuracy. The filtered data are sent to a guidance and control system where actuator commands are formulated based on the filtered data. A simulated launch and flight of the launch vehicle is performed using the filtered data to validate that the GNC system and launch vehicle are ready for launch.
Abstract:
An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a method of manufacturing a capacitor comprising the steps of: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; incorporating them into the above described ink formulation; depositing the ink on a substrate; and heating at 850-900° C. for less than 5 minutes and allowing the ink and substrate to cool to ambient in N2 atmosphere. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900° C. for less than 5 minutes and allowing the layer to cool to ambient in N2 atmosphere.
Abstract:
A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.
Abstract:
A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to form a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.
Abstract:
An electro-active transducer for sonic applications includes a ferroelectric material sandwiched by first and second electrode patterns to form a piezo-diaphragm coupled to a mounting frame. When the device is used as a sonic actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sonic sensor, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns, and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the plane of the ferroelectric material. The mounting frame perimetrically surrounds the peizo-diaphragm and enables attachment of the piezo-diaphragm to a housing.
Abstract:
A system and method of warning and planning failure responses using an automated failure response system including, providing an electro-mechanical system having mechanical and electrical components and providing a failure response system for diagnosing failures of the components. The failure response system then determines effects of said failures on carrying out system activities using the failure response system, quantifies a severity for each failure diagnosed by the failure response system, and identifies repairs for each component failure. The failure response system also prioritizes each failure of a component based on severity and then recommends which repairs should be prioritized as most urgent to keep the electro-mechanical system operational based upon the severity of the associated failures and the effects of their corresponding failure.
Abstract:
A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.
Abstract:
Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
Abstract:
A method for streaming sensor data from a set of radio-frequency identification (RFID) tags includes determining an initial communication approach to be performed with respect to each RFID tag. The method also includes managing access to the RFID tag by refining the initial communication approach based on records of successes and failures of the initial communication approach. A radio-frequency identification (RFID) system is also disclosed, the system comprising one or more processors and a memory system comprising one or more non-transitory computer-readable media storing instructions that, when executed by at least one of the one or more processors, causes the system to perform operations for streaming sensor data from one or more RFID tags to one or more RFID readers.