摘要:
A method for producing an implant including the following steps is provided: —providing a core element having a first material; —providing a negative mold of the implant; —inserting the core element and at least one anchoring element made of a second material into the negative mold, wherein the second material is thermoplastic, —closing the negative mold and applying an elevated deformation temperature, wherein at the deformation temperature the second material is plastically deformable, viscous, or liquid and the first material is solid, —cooling the negative mold together with the core element and the anchoring element, and—removing the resulting implant from the core element and the anchoring element from the negative mold.
摘要:
A perforated sheath is anchored in a tissue opening with the aid of a tool, wherein the anchorage is achieved with the aid of mechanical vibration and a material which is liquefiable by the vibration. The tool includes a vibrating element and a counter element. Distal portions of both elements are introduced into the sheath to be in contact with each other at an interface. The vibrating element is connected to a vibration source and the vibrating element and the counter element are held against each other for effecting liquefaction of the liquefiable material at the interface. Under the effect of the force applied to the vibrating and counter element for holding them against each other, the liquefied material flows from the interface through the sheath perforation and penetrates the tissue.
摘要:
The fusion device for fusing a synovial joint of a human or animal patient, in particular a human facet joint, finger joint or toe joint, includes two pin-shaped anchorage portions (1) and arranged therebetween a stabilization portion (2). The anchorage portions (1) include a thermoplastic material which is liquefiable by mechanical vibration. The stabilization portion (2) preferably has a surface which is equipped for enhancing osseointegration. The anchorage portions (1) have a greater thickness (T1) and a greater depth (D) than the stabilization portion (2). Then the fusion device is pushed between the articular surfaces and mechanical vibration, in particular ultrasonic vibration, is applied to the proximal face (4) of the fusion device. Thereby the liquefiable material is liquefied where in contact with the bone tissue and penetrates into the bone tissue, where after re-solidification it constitutes a positive fit connection between the fusion device and the bone tissue.
摘要:
The fusion device for fusing a synovial joint of a human or animal patient, in particular a human facet joint, finger joint or toe joint, includes two pin-shaped anchorage portions (1) and arranged therebetween a stabilization portion (2). The anchorage portions (1) include a thermoplastic material which is liquefiable by mechanical vibration. The stabilization portion (2) preferably has a surface which is equipped for enhancing osseointegration. The anchorage portions (1) have a greater thickness (T1) and a greater depth (D) than the stabilization portion (2). Then the fusion device is pushed between the articular surfaces and mechanical vibration, in particular ultrasonic vibration, is applied to the proximal face (4) of the fusion device. Thereby the liquefiable material is liquefied where in contact with the bone tissue and penetrates into the bone tissue, where after re-solidification it constitutes a positive fit connection between the fusion device and the bone tissue.
摘要:
A perforated sheath is anchored in a tissue opening with the aid of a tool, wherein the anchorage is achieved with the aid of mechanical vibration and a material which is liquefiable by the vibration. The tool includes a vibrating element and a counter element. Distal portions of both elements are introduced into the sheath to be in contact with each other at an interface. The vibrating element is connected to a vibration source and the vibrating element and the counter element are held against each other for effecting liquefaction of the liquefiable material at the interface. Under the effect of the force applied to the vibrating and counter element for holding them against each other, the liquefied material flows from the interface through the sheath perforation and penetrates the tissue.
摘要:
An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
摘要:
A surgical method is provided, the method including the steps of: providing an artificial or allograft flexible planar structure; providing an implant, the implant including material liquefiable by mechanical oscillation, exposing a surface region of hard tissue or hard tissue substitute material; positioning the implant on an exposed area of the hard tissue or hard tissue substitute material; and fastening the implant to the hard tissue or hard tissue substitute material by impinging the proximal end of the implant with mechanical oscillation and simultaneously pressing the implant against the hard tissue or hard tissue substitute material while the distal end of the implant protrudes into a cavity of the hard tissue or hard tissue substitute material and regions of the liquefiable material are in contact with the hard tissue or hard tissue substitute material, and thereby liquefying at least a portion of the liquefiable material, and letting the liquefiable material resolidify.
摘要:
A system and method of angularly stable fixation of an implant on a bone includes the steps of making at least one hole in the bone by means of a bone drill. An implant is placed on the bone in a desired position and joining the implant with the bone, such that the implant is prevented from rotation about its attachment point. A system is provided for use in the above described method. The system comprises a bone drill, an implant and a sonotrode for angularly stable fixation of the implant on the bone. The system can further comprise a joining element to join the implant with the bone.
摘要:
Elements (5) such as dental fillings, inlays, dental veneers, root pins, implants to be implanted in bone tissue, or endoprostheses are affixed to surfaces (3) of dentine, tooth enamel, bone tissue, or a corresponding substitute material, by providing the element with element surfaces (6) including a first thermoplastic material, by equipping the surfaces (3) of dentine, tooth enamel, bone tissue, or a corresponding substitute material in a preparatory step in such a way that they become weldable with the first thermoplastic material, and by welding the element surfaces (6) to the pre-treated surfaces (3) by e.g. exciting the appropriately positioned element (5) with mechanical vibrations. The pre-treatment of the surfaces (3) in the preparatory step is achieved by attaching solid bodies (2) including a second thermoplastic material to the surfaces (3), with the aid of a curable compound (generally known for preparatory treatment of dentine or enamel surfaces) or with the aid of a cement.
摘要:
An implant or endoprosthesis suitable to be implanted in human or animal tissue comprises two (or more than two) parts to be joined in situ. Each one of the parts comprises a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations comprises a material which is liquefiable by mechanical vibration and the other one of the joining locations comprises a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected pressing the two device parts against each other and by applying vibration, e.g. ultrasonic vibration, to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other. Preferably, at least one of the device parts is fixed to the tissue before or during the joining process. Such fixing is advantageously effected with the aid of a further liquefiable material and mechanical vibration which results in an anchorage of the part by interpenetration of the tissue by the liquefiable material.