Abstract:
A lateral thermal dissipation LED and a fabrication method thereof are provided. The lateral thermal dissipation LED utilizes a patterned metal layer and a lateral heat spreading layer to transfer heat out of the LED. The thermal dissipation efficiency of the LED is increased, and the lighting emitting efficiency is accordingly improved.
Abstract:
A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.
Abstract:
A method for manufacturing a polychromatic light emitting diode device, comprising steps of providing an epitaxial substrate and forming a multiple semiconductor layer on the epitaxial substrate, wherein the multiple semiconductor layer comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer. The active layer emits light of a first wavelength. Thereafter a first wavelength conversion layer is formed on the multiple semiconductor layer. The first wavelength conversion layer is made of semiconductor and absorbs a portion of the light of a first wavelength and emits light of a second wavelength, wherein the second wavelength is longer than the first wavelength.
Abstract:
An edge-lit backlight module includes a back plate, a light bar, and a light guide plate. The back plate has a bottom plate and four lateral sides. Each of the lateral sides is perpendicular to the bottom plate and connected to a peripheral edge of the bottom plate. The light bar is disposed on a side of an internal face of one of the lateral sides to leave at least one accommodation space on the lateral side. The light guide plate has at least one extension portion corresponding to the accommodation space. The light guide plate is disposed on the bottom plate, and each extension portion of the light guide plate engages with the corresponding accommodation space for fixing the light guide plate onto the back plate.
Abstract:
A semiconductor device fabrication method is disclosed. A buffer layer is provided and a first semiconductor layer is formed on the buffer layer. Next, a first intermediate layer is formed on the first semiconductor layer by dopant with high concentration during an epitaxial process. A second semiconductor layer is overlaid on the first intermediate layer. A semiconductor light emitting device is grown on the second semiconductor layer. The formation of the intermediate layer and the second semiconductor layer is a set of steps.
Abstract:
A photoelectric device having Group III nitride semiconductor includes a conductive layer, a metallic mirror layer located on the conductive layer, and a Group III nitride semiconductor layer located on the metallic mirror layer. The Group III nitride semiconductor layer defines a number of microstructures thereon. Each microstructure includes at least one angled face, and the angled face of each microstructure is a crystal face of the Group III nitride semiconductor layer.
Abstract:
A method for manufacturing light-emitting diode (LED) first provides a substrate, then a protrusive patterned layer is formed on the substrate. The protrusive patterned layer exposes portions of the substrate, and the exposed portions are defined as a plurality of exposed regions. Next, a plurality of island semiconductor multi-layer is individually formed in each exposed region of the substrate.
Abstract:
A light-emitting diode (LED) module includes a plurality of LED units and a converter having a first side. The LED units respectively include a circuit board having a second side perpendicular to the first side and a third side parallel to the first side, a plurality of LEDs positioned on the circuit board, and a connector positioned on the second side proximal to the converter. The LED module further includes a plurality of flexible flat cables (FFCs) used to electrically connect the connectors to the converter, respectively.
Abstract:
A lateral thermal dissipation LED and a fabrication method thereof are provided. The lateral thermal dissipation LED utilizes a patterned metal layer and a lateral heat spreading layer to transfer heat out of the LED. The thermal dissipation efficiency of the LED is increased, and the lighting emitting efficiency is accordingly improved.
Abstract:
A method for bonding two materials uses radio frequency energy to swiftly induce heat in a high permeability material for heating a medium to the bonding temperature of the medium so as to bond the two materials with each other.