摘要:
A method for manufacturing a polychromatic light emitting diode device, comprising steps of providing an epitaxial substrate and forming a multiple semiconductor layer on the epitaxial substrate, wherein the multiple semiconductor layer comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer. The active layer emits light of a first wavelength. Thereafter a first wavelength conversion layer is formed on the multiple semiconductor layer. The first wavelength conversion layer is made of semiconductor and absorbs a portion of the light of a first wavelength and emits light of a second wavelength, wherein the second wavelength is longer than the first wavelength.
摘要:
A photoelectric device having Group III nitride semiconductor includes a conductive layer, a metallic mirror layer located on the conductive layer, and a Group III nitride semiconductor layer located on the metallic mirror layer. The Group III nitride semiconductor layer defines a number of microstructures thereon. Each microstructure includes at least one angled face, and the angled face of each microstructure is a crystal face of the Group III nitride semiconductor layer.
摘要:
A semiconductor optoelectronic structure with increased light extraction efficiency, includes a substrate; a buffer layer is formed on the substrate and includes a pattern having plural grooves formed adjacent to the substrate; a semiconductor layer is formed on the buffer layer and includes an n-type conductive layer formed on the buffer layer, an active layer formed on the n-type conductive layer, and a p-type conductive layer formed on the active layer; a transparent electrically conductive layer is formed on the semiconductor layer; a p-type electrode is formed on the transparent electrically conductive layer; and an n-type electrode is formed on the n-type conductive layer.
摘要:
A method for manufacturing a light emitting element includes providing a substrate, forming a buffer layer on the substrate, forming a GaN layer on the buffer layer, forming a rough layer on the GaN layer at low temperature, and forming an epitaxial layer on the rough layer, wherein a refraction index of the epitaxial layer exceeds a refraction index of the rough layer. Thus, most light scatters at the rough layer, and then emits upwardly to a light emitting surface, enhancing light extraction efficiency thereof. An epitaxial process of the method is processed in situ in an MOCVD reactor.
摘要:
An LED module includes a base, a circuit layer formed on the base and multiple LEDs each having an LED die connecting to the circuit layer. The circuit layer includes multiple connecting sections. Each connecting section includes a first connecting part and a second connecting part electrically insulating and spaced from each other. Each LED includes an electrode layer having a first section and a second section electrically insulated from the first section and respectively electrically connecting the first and second connecting parts of a corresponding connecting section. The LED die is electrically connected to the second section. A transparent electrically conductive layer is formed on the LED die and electrically connects the LED die to the first section of the electrode layer. An electrically insulating layer is located between the LED die and surrounding the LED die except where the transparent electrically conductive layer connects.
摘要:
An LED comprises an electrode layer comprising a first a second sections electrically insulated from each other; an electrically conductive layer on the second section, an electrically conductive pole protruding from the electrically conductive layer; an LED die comprising an electrically insulating substrate on the electrically conductive layer, and a P-N junction on the electrically insulating substrate, the P-N junction comprising a first electrode and a second electrode, the electrically conductive pole extending through the electrically insulating substrate to electrically connect the first electrode to the second section; a transparent electrically conducting layer on the LED die, the transparent electrically conducting layer electrically connecting the second electrode to the first section; and an electrically insulating layer between the LED die, the electrically conductive layer, and the transparent electrically conducting layer, wherein the electrically insulating layer insulates the transparent electrically conducting layer from the electrically conductive layer and the second section.
摘要:
A method for fabricating a semiconductor lighting chip includes steps of: providing a substrate; forming a first etching layer on the substrate; forming a connecting layer on the first etching layer; forming a second etching layer on the connecting layer; forming a lighting structure on the second etching layer; and etching the first etching layer, the connecting layer, the second etching layer and the lighting structure, wherein an etching rate of the first etching layer and the second etching layer is lager than that of the connecting layer and the lighting structure, thereby to form the connecting layer and the lighting structure each with an inverted frustum-shaped structure.
摘要:
A method for manufacturing light emitting chips includes steps of: providing a substrate having a plurality of separate epitaxy islands thereon, wherein the epitaxy islands are spaced from each other by channels; filling the channels with an insulation material; sequentially forming a reflective layer, a transition layer and a base on the insulation material and the epitaxy islands; removing the substrate and the insulation material to expose the channels; and cutting the reflective layer, the transition layer and the base to form a plurality of individual chips along the channels.
摘要:
A light emitting diode chip includes an electrically conductive substrate, a reflecting layer disposed on the substrate, a semiconductor structure formed on the reflecting layer, an electrode disposed on the semiconductor structure, and a plurality of slots extending through the semiconductor structure. The semiconductor structure includes a P-type semiconductor layer formed on the reflecting layer, a light-emitting layer formed on the P-type semiconductor layer, and an N-type semiconductor layer formed on the light-emitting layer. A current diffusing region is defined in the semiconductor structure and around the electrode. The slots are located outside the current diffusing region.
摘要:
A gallium nitride-based semiconductor device includes a composite substrate and a gallium nitride layer. The composite substrate includes a silicon substrate and a filler. The silicon substrate includes a first surface and a second surface opposite to the first surface, and the first surface defines a number of grooves therein. The filler is filled into the number of grooves on the first surface of the silicon substrate. A thermal expansion coefficient of the filler is bigger than that of the silicon substrate. The gallium nitride layer is formed on the second surface of the silicon substrate.