Abstract:
The present invention relates to compounds 1, 1a (S-enantiomer) and 1b (R-enantiomer) of the following formula 1, and a method for preparing the same. [formula 1] The novel compound of the formula 1 is used as an important intermediate for preparing compounds 6, 6a (S-enantiomer) and 6b (R-enantiomer) of the following formula 6, which are 2,2′-binaphthol-3-aldehyde derivatives. Also, the present invention provides a method for preparing the compound of formula 1 with a very safe method at low cost. [formula 6]
Abstract:
An active material for a rechargeable lithium battery is provided with a non-carbon-based material on which nanofiber-shaped carbon having an oxygen-included functional group is grown. The negative active material for a rechargeable lithium battery has good conductivity and cycle life characteristics.
Abstract:
Methods of preparing graphene nano ribbons may include forming a graphene sheet on at least one surface of a substrate, forming a plasma mask having a nano pattern on the graphene sheet, and forming a nano pattern on the graphene sheet by plasma treating a stack structure on which the plasma mask is formed.
Abstract:
Provided are a photosensor, a photosensor apparatus including the photosensor, and a display apparatus including the photosensor apparatus. The photosensor includes a substrate; a first light receiving layer which is formed on the substrate and comprises an oxide; a second light receiving layer which is connected to the first light receiving layer and comprises an organic material; and first and second electrodes which are respectively connected to the first and second light receiving layers.
Abstract:
Provided is a method of manufacturing carbon nanotube (CNT) device arrays. In the method of manufacturing CNT device arrays, catalyst patterns may be formed using a photolithography process, CNTs may be grown from the catalyst patterns, and electrodes may be formed on the grown CNTs.
Abstract:
The present invention relates to an active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The active material includes an active material and a fiber-shaped or tube-shaped carbon conductive material attached to the surface of the active material. The active material includes a conductive shell including a fiber-shaped or tube-shaped carbon conductive material and increases discharge capacity due to improved conductivity and improves cycle-life efficiency by maintaining paths between active material particles during charge and discharge cycles.
Abstract:
Discussed are an ink containing nanoparticles for formation of thin film of a solar cell and its preparation method, CIGS thin film solar cell having at least one light absorption layer formed by coating or printing the above ink containing nanoparticles on a rear electrode, and a process for manufacturing the same. More particularly, the above absorption layer includes Cu, In, Ga and Se elements as constitutional ingredients thereof and such elements exist in the light absorption layer by coating or printing an ink that contains Cu2Se nanoparticles and (In,Ga)2Se3 nanoparticles on the rear electrode, and heating the treated electrode with the ink. Since Cu(In,Ga)Se2 (CIGS) thin film is formed using the ink containing nanoparticles, a simple process is used without requirement of vacuum processing or complex equipment and particle size of the thin film, Ga doping concentration, etc., can be easily regulated.
Abstract:
Nicotinamide and/or a compound which is chemically combined with nicotinamide may be used as a carbon nanotube (“CNT”) n-doping material. CNTs n-doped with the CNT n-doping material may have long-lasting doping stability in the air without de-doping. Further, CNT n-doping state may be easily controlled when using the CNT n-doping material. The CNT n-doping material and/or CNTs n-doped with the CNT n-doping material may be used for various applications.
Abstract:
A graphene laminate including a substrate, a binder layer on the substrate, and graphene on the binder layer, wherein the graphene is bound to the substrate by the binder layer.
Abstract:
A touch screen display apparatus including a sensor unit to sense and to process light signals and a pixel unit to drive pixels according to the light signal processing performed by the sensor unit. The touch screen display apparatus includes a substrate; a plurality of pixel units disposed on the substrate, wherein each of the pixel units includes a first electrode, a second electrode, and an emission layer interposed between the first electrode and the second electrode; and a plurality of sensor units disposed on the substrate, wherein each of the sensor units includes a sensor first electrode, a sensor second electrode, and an organic light receiving layer interposed between the sensor first electrode and the sensor second electrode.