Abstract:
A scrubbing article 10 including a substrate 12 and a texture layer 14. The texture layer 14 is formed on to a surface 16 of the substrate 12 and includes a multiplicity of microparticles. In some embodiments, the multiplicity of microparticles comprises plastic microbubbles and/or ceramic microspheres that are substantially spherical. In related embodiments, at least some of the ceramic microspheres are solid, and in other embodiments at least some of the ceramic microspheres are glass microbubbles. The substrate 12 can assume various forms, such as nonwoven, fabric (e.g., woven or knitted), foam, film and sponge material or combinations thereof.
Abstract:
Sized short alumina-based inorganic oxide fiber comprises, based on the total weight of the sized short alumina-based inorganic oxide fiber: from 0.1 to 15 percent by weight of a size resin comprising a polyamide; and from 85 to 99.9 percent by weight of short alumina-based inorganic oxide fiber. Methods of making the sized short alumina-based inorganic oxide fiber and compositions comprising the sized short alumina-based inorganic oxide fiber in a polymeric matrix are also disclosed.
Abstract:
Heat-activatable siloxane-based adhesive articles include a substrate and a heat-activatable adhesive layer that includes a hot melt processable siloxane-based elastomeric polymer. The siloxane-based elastomeric polymer is a urea-containing segmented copolymer or an oxamide-containing segmented copolymer. The adhesive layers are substantially free of tackifying resins and are non-tacky and non-adhesive until heated to a temperature of at least 50 C. The adhesive layers may be optically clear and may have a microstructured surface.
Abstract:
Siloxane-based pipe coatings include a hot melt processable siloxane-based elastomeric polymer, and may optionally contain fillers and additives. The siloxane-based elastomeric polymer is a urea-containing segmented copolymer or an oxamide-containing segmented copolymer. The coatings are substantially free of tackifying resins and are non-tacky and non-adhesive until heated to a temperature of at least 50 C.
Abstract:
Methods of bonding polyester substrates together, comprising externally delivering thermal energy onto the bonding surfaces of the substrates and bringing the bonding surfaces into proximity with each other and bonding the substrates to each other.
Abstract:
The inventors of the present disclosure recognized that, surprisingly, the antimicrobial treatments used on cellulosic sponges do not work in hydrophilic polyurethane sponges. As such, the inventors of the present disclosure discovered a need for an antimicrobial treatment for use on hydrophilic polyurethane foam sponges. The present inventors invented one antimicrobial composition for use on hydrophilic polyurethane foam sponges including an acetate salt solution humectant. The present inventors invented another antimicrobial composition for use on hydrophilic polyurethane foam sponges including a non-halogen humectant comprising a salt solution having a pH between about 3 and 10 and a water activity of less than 0.9 at 25° C.
Abstract:
A scrubbing article including a substrate, a stain release coating and a texture layer. The stain release coating is applied to the substrate and is present over a at least a major surface of the substrate, and the texture layer is formed over the stain release coating opposite the substrate. In some embodiments, the texture layer is printed on to the stain release coating. The substrate can assume various forms, such as nonwoven, fabric (e.g., woven or knitted), foam, film and sponge material or combinations thereof.
Abstract:
A scrubbing article including a substrate and a UV treated texture layer on a surface of the substrate. The substrate is formed from a single layer of foam or sponge material having a thickness that is conducive to handling or holding. The UV treated texture layer is a resin-based material forming a textured abrasive layer on the surface of the substrate.
Abstract:
A composition that includes a polyolefin having first repeating units, hollow glass microspheres, a polyolefin impact modifier that is chemically non-crosslinked and free of polar functional groups, and a compatibilizer comprising the first repeating units and second repeating units, which are the first repeating units modified with polar functional groups. Articles made from the composition and methods of making an article by injection molding the composition are also disclosed.
Abstract:
Heat-activatable siloxane-based adhesive articles include a substrate and a heat-activatable adhesive layer that includes a hot melt processable siloxane-based elastomeric polymer. The siloxane-based elastomeric polymer is a urea-containing segmented copolymer or an oxamide-containing segmented copolymer. The adhesive layers are substantially free of tackifying resins and are non-tacky and non-adhesive until heated to a temperature of at least 50 C. The adhesive layers may be optically clear and may have a microstructured surface.