Abstract:
Object Provided is a long chain alkyl-based release agent useful in production of a light release liner that can be used in a light release surface of an adhesive transfer tape. Solution means An acrylic polymer release agent according to an embodiment includes a polymerization product of a polymerizable precursor composition containing an acrylate monomer having a branched alkyl group having 24 or more carbon atoms and an acrylic monomer having a benzophenone structure.
Abstract:
Problem: To provide an optically clear adhesive with a high dielectric constant having an excellent balance of adhesive strength and cohesive strength as well as excellent optical characteristics, and an optical laminate containing the same. Solution: The optically clear adhesive of an embodiment of the present disclosure comprises a polymer of an acrylic monomer composition containing a hydroxyl group-containing monomer and at least 0.09 mass % and less than 50 mass % of a monofunctional alkyl (meth)acrylate, wherein the number of moles of OH in 100 g of the adhesive is at least 0.3 and at most 0.90.
Abstract:
Polylactic acid-containing resin composition that includes a polylactic acid; and a (meth)acryl-silicone copolymer that includes a methyl(meth)acrylate; and a reactive silicone, wherein the (meth)acryl-silicone copolymer has a weight average molecular weight of 25,000 or more. Methods for producing a polylactic acid-containing resin composition, polylactic acid-containing resin films, polylactic acid-containing resin release films, polylactic acid-containing resin release films, and methods for producing polylactic acid-containing resin films are also disclosed.
Abstract:
Problem: To provide a method for producing a laminate comprising a thick, highly transparent cured adhesive sheet exhibiting flow characteristics accompanied by satisfactory fluidity and satisfactory initial adhesion to an adherend before irradiation, and satisfactory hardness (in particular, a high storage modulus) after irradiation. Solution: A method for producing a laminate comprising a first substrate, a second substrate, and a cured adhesive sheet disposed therebetween, the method comprising steps of: forming into a sheet a radiation-curable adhesive sheet precursor comprising a polymer/monomer mixture comprising a partially polymerized (meth) acrylic monomer, a monomer having radiation reactive sites activated by short-wavelength radiation of a first wavelength or less, and a photoinitiator for initiating polymerization of the polymer/monomer mixture and the radiation reactive site-possessing monomer via radiation of a wavelength greater than the first wavelength; irradiating the precursor with radiation of a wavelength greater than the specific wavelength to polymerize the radiation-curable adhesive sheet precursor, forming a radiation-curable adhesive sheet; disposing the radiation-curable adhesive sheet adjacent to at least one surface of the first substrate; disposing the second substrate adjacent to a radiation-curable adhesive sheet; applying heat and/or pressure to the radiation-curable adhesive sheet; and irradiating the radiation-curable adhesive sheet with radiation comprising short-wavelength radiation of a first wavelength or less to obtain a cured adhesive sheet.
Abstract:
Problem: To provide a method for producing a laminate comprising a thick, highly transparent cured adhesive sheet exhibiting flow characteristics accompanied by satisfactory fluidity and satisfactory initial adhesion to an adherend before irradiation, and satisfactory hardness (in particular, a high storage modulus) after irradiation. Solution: A method for producing a laminate comprising a first substrate, a second substrate, and a cured adhesive sheet disposed therebetween, the method comprising steps of: forming into a sheet a radiation-curable adhesive sheet precursor comprising a polymer/monomer mixture comprising a partially polymerized (meth) acrylic monomer, a monomer having radiation reactive sites activated by short-wavelength radiation of a first wavelength or less, and a photoinitiator for initiating polymerization of the polymer/monomer mixture and the radiation reactive site-possessing monomer via radiation of a wavelength greater than the first wavelength; irradiating the precursor with radiation of a wavelength greater than the specific wavelength to polymerize the radiation-curable adhesive sheet precursor, forming a radiation-curable adhesive sheet; disposing the radiation-curable adhesive sheet adjacent to at least one surface of the first substrate; disposing the second substrate adjacent to a radiation-curable adhesive sheet; applying heat and/or pressure to the radiation-curable adhesive sheet; and irradiating the radiation-curable adhesive sheet with radiation comprising short-wavelength radiation of a first wavelength or less to obtain a cured adhesive sheet.
Abstract:
To provide a radiation curable pressure sensitive adhesive sheet capable of yielding both a pressure sensitive adhesive sheet with good initial adhesion to an adherend before irradiation and a pressure sensitive adhesive sheet with good rigidity after irradiation. A radiation curable pressure sensitive adhesive sheet includes a (meth)acrylic copolymer having a radiation reactive site and a plasticizer capable of bonding with the (meth)acrylic copolymer upon being irradiated.
Abstract:
Object To provide a non-fluorine-based release liner having excellent heat-resistant stability of releasability and release strength that may be applied to a silicone adhesive layer, and a laminate and a roll body including the release liner. Resolution Means A release liner for a silicone adhesive layer according to an embodiment of the present disclosure includes a substrate and a release layer on at least one surface of the substrate, and the release layer contains poly(meth)acrylic acid ester, the poly(meth)acrylic acid ester is a polymer of a polymerizable component containing an alkyl (meth)acrylate monomer having a branched alkyl group having 8 or more carbon atoms.
Abstract:
Polylactic acid-containing resin composition that includes a polylactic acid; and a (meth)acryl-silicone copolymer that includes a methyl(meth)acrylate; and a reactive silicone, wherein the (meth)acryl-silicone copolymer has a weight average molecular weight of 25,000 or more. Methods for producing a polylactic acid-containing resin composition, polylactic acid-containing resin films, polylactic acid-containing resin release films, polylactic acid-containing resin release films, and methods for producing polylactic acid-containing resin films are also disclosed.
Abstract:
A micro-structured optically clear adhesive, including a first major surface and a second major surface, wherein at least one of the first and second major surfaces comprises a micro-structured surface of interconnected micro-structures in at least one of the planar dimensions (x-y), is disclosed. The micro-structured optically clear adhesive has a tan delta value of at least about 0.3 at a lamination temperature and is non-crosslinked or lightly crosslinked. The micro-structured surface may include indentations having a depth of between about 5 and about 80 microns. A method of laminating a first substrate and a second substrate without the use of a vacuum is provided. The method includes providing a micro-structured optically clear adhesive, removing a release liner from a first side of the micro-structured optically clear adhesive, contacting the first side of the micro-structured optically clear adhesive with a surface of the first substrate, removing a micro-structured release liner from a second side of the micro-structured optically clear adhesive to expose a micro-structured surface, and contacting the micro-structured surface with a surface of the second substrate.
Abstract:
The present invention is a copolymer of a monomer mixture including about 25 to about 80 parts by mass of an alkyl (meth)acrylate, approximately 15 to approximately 50 parts by mass of a hydroxyl group-containing monomer, and approximately 5 to approximately 25 parts by mass of a macromer having a glass transition temperature (Tg) of approximately 50° C. or higher. The copolymer contains substantially no acidic groups.